

Alice Caponiti, Director Office Of Nuclear Energy Technologies Office of Nuclear Energy

December 4, 2018

Office of Nuclear Energy – Mission Pillars

- Advance nuclear power to meet the nation's energy, environmental, and national security needs.
- Resolve technical, cost, safety, security and regulatory issues through research, development and demonstration.

Office of Nuclear Energy Realignment*

- Realignment executed in Oct 2018 moved Advanced Reactor Technologies from NE-4 to NE-5
- Merges advanced reactor technology programs to single organization
- Versatile Test Reactor and fuel development remain in NE-4

*Ink not dry!

Realigned NE-5*

*Ink not dry!

Nuclear Energy Enabling Technologies

Industry and University Support

- Industry funding opportunities
 - Industry FOA & GAIN Vouchers
- Nuclear Energy University Program
- Research Reactor Infrastructure
- Integrated University Program

Light Water Reactor Sustainability

Advanced Reactor Technologies

- Advanced non-LWRs R&D
- Microreactors
- Regulatory Support

Advanced SMR R&D

Gateway for Accelerated Innovation in Nuclear (GAIN) gain.inl.gov

Nuclear Energy Enabling Technologies (NEET)

NEET

Conducts research and development (R&D) and makes strategic investments in research capabilities to develop innovative and crosscutting nuclear energy technologies to resolve U.S. industry nuclear technology development issues

Program Elements

- <u>Crosscutting Technology Development:</u>
 - Advanced Sensors and Instrumentation
 - Advanced Methods for Manufacturing
 - Advanced Cooling Technologies
 - Hybrid Energy Systems
 - Cybersecurity
- Advanced Modeling and Simulation both NEAMS and Hub
- Nuclear Science User Facilities
- <u>Transformational Challenge Reactor</u>

Advanced Methods for Manufacturing Vision and Goals

Vision

 To improve the methods by which nuclear equipment, components, and plants are manufactured, fabricated, and assembled by utilizing 'state of the art' methods

Goal

- To reduce cost and schedule for new nuclear plant construction
- To make fabrication of nuclear power plant (NPP) components faster, less expensive, and more reliable

AMM Projects

- Competitively selected projects via CINR
 - AMM initiated in FY 2012
 - Open to universities, national laboratories and Industry
 - R&D and irradiation/PIE projects funded
 - FY2012 FY 2017: ~\$15M
 - ➢ In FY 2018 38 AMM CINR proposals received
 - 2 CINR projects awarded \$2M
 - 3 Phase I SBIR projects awarded \$450K
 - 2 Phase II SBIR projects awarded \$2M
 - FY 2019: Currently 31 AMM CINR proposals under review

FY 2019 CINR FOA Focus Areas

- 1. Factory and Field Fabrication Techniques, such as:
 - Welding and joining technologies
 - Modular fabrication and installation
- 2. Quality Control Techniques and Qualification Methodologies

Advanced surface plasma nitriding for development of corrosion resistance and accident tolerant fuel cladding – Texas A&M University (10/1/2015 – 9/30/2018)

Improving Weld Productivity and Quality by means of Intelligent Real-Time Close-Looped Adaptive Welding Process Control through Integrated Optical Sensors – ORNL, University of Kentucky and EPRI (10/01/2014 – 6/30/2018)

Past and Current AMM Project Focus Areas

- Factory and Field Fabrication Techniques
 - High speed, high quality welding technologies
- Assembly and Material Innovation to Enhance Modular Building Techniques
 - Advances and innovation in high strength concrete and rebar
- Advances in Manufacturing Processes
 - Cladding and surface modification methods
 - Additive manufacturing
- Improved Concrete Inspection, Acceptance and Construction Methods
 - Improved methods to facilitate the curing of concrete
- Data Configuration Management
 - Imaging techniques for as-built design
 - UAV based 3D surveying

Photo courtesy of TetraVue, Inc.

Grid spacer after application of surface nitriding

FY 2018 Industry FOA Awards

• First Round – BWXT

Establish an integrated advanced manufacturing and data science driven paradigm for advanced reactor systems

• Will develop the ability to implement additive materials manufacturing to the fabrication process for nuclear components and sub-components

• Second Round – HOLTEC

Advance and commercialize hybrid laser arc welding for nuclear vessel fabrication

- Will develop, qualify, demonstrate, and commercialize a metal joining process to solve major manufacturing challenges associated with the fabrication of nuclear components
- Third Round EPRI
 - Establish modular in-chamber electron beam welding capability
 - Will demonstrate the capability to produce large, thick-section components

Questions?

Clean. Reliable. Nuclear.