Human Factors and Lighting
for Underground Mining

Max J. Martell
Mining Engineer
Pittsburgh Mining Research Division
Human Factors Branch
Illumination Team
Why conduct lighting research?

It’s fundamental for health & safety

80% of our perception is visual

Workers depend on lighting to see hazards and work safely

Underground mines are considered one of the most difficult places to light
Underground mines present unique challenges that need to be addressed:

- Low ceilings and very low reflectivity
- Constantly changing environment
- Strict lighting regulations
- Some areas not lit at all
- Shift work and darkness can increase fatigue
- Aging of the mining workforce
Topics for discussion:

1. Visibility
 a. Saturn light
 b. NIOSH LED cap lamp

2. Visual cues
 a. Escapeway markers
 b. Lighted Lifeline

3. Light and fatigue
Roof bolter illumination

- One of the most dangerous machines to operate
- Drills bolts to secure roof
- Federal requirements for lighting

Problems:
- Excessive glare
- Poor lighting of interior workspaces
- Confined spaces difficult to illuminate
- Hazardous environment requires explosion-proof lights
Saturn LED Area Light

- Reduces glare and improves hazard detection
- Replaces two existing CFLs
- Improvements:
 - 37% less glare
 - 112% increased reaction time
 - 2303% more floor illumination
 - 875% less weight
 - 675% less electrical power
 - 598% less volume
Saturn area light increases illumination while decreasing glare
Cap Lamps

- Problem:
 - Current cap lamps provide poor visibility
 - No peripheral vision from tunnel vision effect
 - Causes glare from spot beam

NIOSH LED Cap Lamp

- 3 angled LEDs with optics
- Programmable intensity & light pattern
- Uses less power
- Reduces glare and tunnel vision effect
The NIOSH LED Cap Lamp improves visibility without causing glare

Traditional LED cap lamp

NIOSH LED cap lamp

- +79% peripheral detection
- +94% floor hazard detection
- 33% to 50% less power
- No increase in glare
Topics for discussion:

1. Visibility
 a. Saturn light
 b. NIOSH LED cap lamp
2. Visual cues
 a. Escapeway markers
 b. Lighted Lifeline
3. Light and fatigue
Escapeway markers: Passive beacons

- Federal law requires marking primary and secondary escapeways.

- Problems:
 - No color code
 - Various colors, sizes, and shapes
 - Various retroreflective materials

- Tested red, green, and blue markers for detectability in smoke
- Tested FYG, white, yellow, and green markers for differentiation
Escapeway marker color is critical for visibility in smoke

Green Marker Red Marker Blue Marker
Escapeway marker detection improved 20% for FYG vs. Green

20% (24 in.)
Lifelines for emergency self-escape

- Required by law for underground coal mines
- Tactile objects indicate:
 - Escape direction
 - Locations of safety resources

- Problem:
 - Mine disasters typically produce smoke
 - How can miners find the lifeline?
The Lighted Lifeline increases detectability in smoke for miner self-escape

- Fiber optic cable illuminated by lasers
- Greatly increases lifeline visibility in smoke
- Other potential uses:
 - Communications
 - Distributed sensing
 - Temperature
 - Sound
 - Strain
Lighted Lifeline colors for emergency self-escape in smoke
Topics for discussion:

1. Visibility
 a. Saturn light
 b. NIOSH LED cap lamp

2. Visual cues
 a. Escapeway markers
 b. Lighted Lifeline

3. Light and fatigue
Insufficient light can disrupt circadian rhythms and lead to fatigue

- Highly dependent on the day/night cycle of light
- Underground miners work in darkness for large portions of the day making them especially vulnerable
- Majority of miners shiftwork
- Some areas and machines use “yellow” light
Insufficient light has numerous impacts on safety, including:

Decreased:
- alertness
- productivity
- reaction time
- cognitive function

Increased:
- accidents
- health impacts
- sensitivity to light
- fatigue
Circadian disruption can lead to severe consequences for health

Short-term:
- Loss of sleep
- Weak immune system
- Depression

Long-term:
- Obesity
- Diabetes
- Cancer
NIOSH project
Human-centric lighting (HCL) for mitigating mineworker circadian disruption

Objective: Determine the extent of mineworker circadian rhythm disruption and evaluate the feasibility and efficacy of HCL to reduce accidents where fatigue and alertness are contributing factors.
Project challenges for underground mines

• Considered one of the most challenging places to light

• Coal mines require “approved” lighting
 o Intrinsically safe, XP housings, etc.

• Unlikely actigraphy devices would be “approved”

• Difficult data collection

• Hardhat & safety glasses limit retinal illumination

• Aging of the mining workforce
Lighting is fundamental for the health & safety of underground miners