Closing the green gap

B. Hahn, A. Bauer, M. Binder Osram Opto Semiconductors SSL workshop | Jan. 29th 2019

Wall Plug Efficiency at 350mA/mm² Visible spectrum – Status 2015

green gap

- Transport
- Crystal quality (>530nm)

Closing the green gap

currently pursued approaches at OS

1) direct green LEDs (prior art)

- + small spectral FWHM
- inferior efficiency
- + single component technology, minimized complexity

2) phosphor converted blue LEDs

- + currently superior efficiency increased spectral FWHM
- two component technology, higher complexity

3) Hi-Q-LED / epi conversion (2015)

- + FWHM comparable to direct emitting LEDs
- o efficacies outperform direct green LEDs in some applications
- two component technology, higher complexity

4) new generation of direct green LEDs (2018)

- + small spectral FWHM
- + superior efficiency
- + single component technology, minimized complexity

closing the green gap

disruptive approach

what is primary efficacy limitation of green InGaN LEDs?

green LEDs have

- higher barriers
- thicker barriers
- → higher forward voltage

available options:

- lower barriers
- thinner barriers
- → epitaxial quality too low for high In content QW

disruptive approach:

→ "bypass" barriers

40% efficacy boost for InGaN based green products

accompanying press release: http://www.osram-group.com/en/media/press-releases/pr-2018/08-05-2018

→ Longer battery life for fitness trackers: Osram increases the efficiency of green LEDs by 40 percent

- only approx. +200mV offset to theoretical voltage limit now available up to 545nm

40% efficacy boost for InGaN based green products

accompanying press release: http://www.osram-group.com/en/media/press-releases/pr-2018/08-05-2018

→ Longer battery life for fitness trackers: Osram increases the efficiency of green LEDs by 40 percent

- only approx. +200mV offset to theoretical voltage limit now available up to 545nm
- 177lm/W is highest reported efficacy value for direct green InGaN LEDs at standard j

40% efficacy boost for InGaN based green products

accompanying press release: http://www.osram-group.com/en/media/press-releases/pr-2018/08-05-2018

→ Longer battery life for fitness trackers: Osram increases the efficiency of green LEDs by 40 percent

- only approx. +200mV offset to theoretical voltage limit now available up to 545nm
- 177lm/W is highest reported efficacy value for direct green InGaN LEDs at standard j
- even >300lm/W at application significant current densities (e.g. 40mA in 1mm² die)
- chip processing remains unchanged
 - → proven quality of UX:3 technology still utilized

phi_v 20 mA

Much higher light output for InGaN at 560 nm (x30) and 570 nm (x4)

@ 25°C: crossing of Phi_v at about 578 nm Ldom.

@ 120°C: crossing at about 588 mm Ldom.

InGaN potentials beyond 550nm

- new approach paves the way to efficient yellow/red direct InGaN emitters

Device Complexity & Challenges

Example of a typical InGaAIP LED

Thermal aspects

Self-heating of the device

Package-Design

Electric Properties

- Current-spreading
- Conductivities & Contact-Resistances

Optical Characteristics

- Material absorption / Optical constants
- Contact- & Mirror-Reflectivities
- Active-Region Spectral Power Density

Interplay of all aspects

Transport aspects

- Carrier-Injection / Leakage
- Internal Quantum Efficiency
- Microscopic Bandstructure Engineering

Geometry

- "Guiding" light inside a device
- Current-Spreading Control

Oslon Giant package:

2mm Horticulture chip:

Chip cross section & improvement areas:

InGaAIP – 660nm – Horticulture WPE performance

Horticulture WPE in OSLON Giant

@ 350mA / 1mm²:

- R&D: ≈73%

- Target production chip: ≈70%

- Production chip: ≈65%

Wall Plug Efficiency at 350mA/mm² Visible spectrum – Progress 2015→2018

