HyMARC: Addressing Key Challenges to Hydrogen Storage in Advanced Materials Through a Multi-Lab Collaboration

Mark D. Allendorf, Sandia National Laboratories
Tom Gennett, National Renewable Energy Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Fuel Cell Technologies Office Webinar
January 9, 2019
Question and Answer

• Please type your questions to the chat box. **Send to: (HOST)**
Acknowledgements

We are grateful for the financial support of EERE/Fuel Cell Technologies Office and for technical and programmatic guidance from Dr. Ned Stetson, Jesse Adams, and Zeric Hulvey

Enabling twice the energy density for onboard H₂ storage
Outline

- **FCTO Introduction**

- **HyMARC**
 - Objectives & goals
 - Phase 1 accomplishments
 - Moving the state-of-the-art
 - Seedlings

- **HyMARC Phase 2**
 - Tasks
 - Research projects

- **HyMARC Capabilities**
 - Modelling
 - Advanced characterization

- **HyMARC**
 - Examples of on-going research

- **Questions and Answers**
HyMARC performs foundational research, develops capabilities to accelerate materials discovery, and supports Seedling projects

Objectives:

• **Develop** and **Enhance** Hydrogen Storage Core Capabilities:
 - **Computational models and databases** for high-throughput materials screening
 - **New characterization tools and methods** (surface, bulk, soft X-ray, synchrotron)
 - **Tailorable synthetic platforms** for probing nanoscale phenomena

• **Validate** claims, concepts and theories of hydrogen storage materials

• **Accelerate** the path forward to development of hydrogen storage materials for transportation
Principal Investigators and Lead Researchers

- Mark Allendorf
 Co-Director
 SNL PI

- Vitalie Stavila

- Tom Gennett
 Co-Director
 NREL PI

- Phil Parilla

- Brandon Wood
 LLNL PI

- Tae Wook Heo

- David Prendergast
 LBNL PI

- Jeff Long
 LBNL PI

- Tom Autrey
 PNNL PI

- Mark Bowden

- Craig Brown

- Terry Udovic

- Jeff Urban
Accelerating materials discovery

- **Strategy assessments**: identified most promising material improvement strategies
- **Missing/inaccurate data**: e.g. thermodynamic data essential for material assessment
- **Modeling tools**: filling major gaps in understanding of key processes
- **Enabling Seedling Projects by providing**:
 - Access to experimental resources essential to their success (e.g., hi-P reactors and PCT)
 - Computational modeling in support of experiments (outside Seedling budget)
 - Assisting with data interpretation (e.g., computational spectroscopy)

Material development strategies we evaluated indicate progress toward several DOE targets
HyMARC foundational research addresses all phenomena potentially influencing reaction thermodynamics and kinetics.

Effective thermal energy for H_2 release:

$$\Delta E(T) = \Delta H^\circ(T) + E_a$$

Thermodynamics Kinetics
Phase 1: Some Examples of how HyMARC moved the bar for specific materials or strategies

- **Interface engineering**: Li$_3$N@(6nm-C) H$_2$ cycling T reduced by >180 °C (bulk is 430 °C)
- **Nanoconfinement (porous host)**: Mg(BH$_4$)$_2$@(6-nm C) H$_2$ desorption T reduced > 100 °C
- **Nanoencapsulation**: Mg(BH$_4$)$_2$@rGO >10 wt% (record for nanoscale hydride)
- **Sorbent Capacity**: Ni (m-dodbc) Highest volumetric/gravimetric room temperature capacity to date.
- **Hydrides**: Improved reversibility of Mg(BH$_4$)$_2$ to temperatures below 200 °C
- **Binding energies**: Established ability to alter hydrogen binding energies approaching 15 kJ/mole in sorbent materials
- **Desorption control**: Established that desorption temperatures can be controlled with dynamic sorbent materials (e.g. phonon vibrational modes, expansion, etc.)
- **Multiple molecular H$_2$ adsorption**: First sorbent material with validated existence of two hydrogen molecules adsorbed per metal center
Two major publications from HyMARC Phase 1 document perspectives on sorbent strategies and nanoscale metal hydrides

HyMARC FY17/Q2 Go/No-go Milestone

Rank improvement strategies for sorbents. Decision criterion: select 2 with greatest potential for increasing ΔH°. **Top strategies:**
- Open metal sites in MOFs
- Lewis acid/Lewis-base sites

Energy & Environ. Sci. 2018, 11, 2784

“An Assessment of Strategies for the Development of Solid-State Adsorbents for Vehicular Hydrogen Storage”

Topics include:
- Usable gravimetric and volumetric capacities
- The importance of binding strength
- Theoretical calculations of H_2 physisorption
- Considerations for adsorbent synthesis and characterization
- Revisiting the results of the 2010 HSCoE final report
- Perspectives on current material strategies

Chem. Rev. 2018, 22, 10775

“Nanostructured Metal Hydrides for Hydrogen Storage”

Topics include:
- Classes of nanostructured metal hydrides
- Synthesis routes
- Structure
- Morphology
- Mechanistic effects

HyMARC FY18/Q4 Go/No-go Milestone

Rank improvement strategies for hydrides. Decision criterion: select 2 with greatest potential for reducing effective ΔH (article addresses a major strategy considered in the Go/No-go)
HyMARC is currently collaborating with Phase 2 Seedling Projects and facilitating their research

The HyMARC team assists individual projects with:

• A designated HyMARC point-of-contact
• Technical expertise concerning specific scientific problems
• Access to HyMARC capabilities
 – Note that HyMARC collaborates and is not an analytical service

• Development of Magnesium Boride Etherates as Hydrogen Storage Materials (U. Hawaii)
 – Instability in MgB$_2$ B sheets explained (LLNL modeling investigation)
 – High-P hydrogenation, XRD, and FTIR performed for 43 MgB$_2$(etherate) samples

• Electrolyte Assisted Hydrogen Storage Reactions (Liox Power)
 – High-P experiments and sample characterization

• ALD Synthesis of Novel Nanostructured Metal Borohydrides (NREL)
 – Mg(BH$_4$)$_2$ nanoparticle samples sent to NREL for ALD coating

• Optimized Hydrogen Adsorbents via Machine Learning & Crystal Engineering (U. MI)
 – Discussions on crystal engineering of OMS in MOFs
HyMARC Phase 2 Task Structure

Task 1: Sorbents
- PI: Tom Gennett (NREL, Golden, CO)

Task 2: Metal Hydrides
- PI: Mark Allendorf (Sandia, Livermore, CA)

Task 3: Hydrogen Carriers
- PI: Tom Autrey (PNNL, Richland, WA)

Task 4: Advanced Characterization Capabilities
- PI: Phil Parilla (NREL, Golden, CO) and David Prendergast (Molecular Foundry, LBNL)

Task 5: Research Support for Seedling Projects
- PI’s: Mark Allendorf and Tom Gennett

Task 6: HyMARC Data Hub
- PI: Kristin Munch (NREL, Golden, CO)
HyMARC Phase 2 Focus Areas: designated high-priority research topics

Sorbents:
1.A Enthalpy / Entropy
1.B Optimizing Sorbent Binding Energies
1.C Optimizing Sorbent Packing
1.D. Dynamic Sorbent Materials
1.E Multiple Hydrogens Per Metal
1.F Nanoscale Defects in Sorbents

Metal hydrides:
2.A Thermodynamics
2.B Solid Interfaces and Surfaces
2.C Activation of bonds in hydride materials to improve kinetics (e.g. B-B, B-H, etc.)
2.D Nanoscaling to Improve Thermodynamics and Kinetics
2.E Microstructural Impacts of Complex Metal Hydride Reactions
2.F Machine Learning and Data Science

Advanced Characterization:
4.A High-Temperature Validated PCT System
4.B PCT Calorimetry,
4.C NMR Spectroscopy
4.D *In-situ* and *ex-situ* Synchrotron, Neutron and DRIFTS Techniques
HyMARC Modeling capabilities: tools that now cover all relevant length scales and many important phenomena

- **Atomic/molecular (0 – 1 nm)**
 - Computational Spectroscopy
 - Surface chemistry
 - Interatomic potentials
 - Example: NaAlH₄ surface chemistry: role of oxide

- **Molecular/micro (0.5 – 2 nm)**
 - Simulation
 - Microstructure
 - Example: Time-dependent simulations of MgH₂ formation

- **Mesoscale (2 - 100 nm)**
 - Nucleation kinetics
 - Phase microstructures
 - Example: Nano-alloying of Ni-doped Mg

- **Grains (≤ 10 μm)**
 - Grain boundaries
 - Particle size effects
 - Stress/strain
 - Example: H diffusion in PdHₓ
 - Diffusion in NaBH₄

- **Macroscale/Bulk**
 - Thermodynamics
 - Example: Mg(BH₄)₂ phase diagram

Diagram:

- MgB₂ phase diagram
- Mg(BH₄)₂
- MgB₂ + 4 H₂
- 1/6 MgB₁₂H₁₂ + 5/6 Mg + 3 H₂

Graph:

- Energy level diagram
- Reaction pathways

Scale:

- Length (m) range from 10⁻¹⁰ to 10⁻²
Characterization tools: expanded and extended to in-situ, in-operando probing and mesoscale resolution

Atomic/molecular (0 – 1 nm)

Molecular/micro (0.5 – 2 nm)

Mesoscale (2 - 100 nm)

Grains (≤ 10 μm)

Macroscale/Bulk

- **Microporosimetry/BET**
- **AP-XPS ALS/BL 11.0.2**
- **XAS In-situ flow cell (1 bar, max. 250°C)**
- **He bubbles seen by AC-TEM STEM res. 63 pm**
- **STXM (30 nm res.) LBNL/ALS**
- **LiNH₂**
- **Li₃N**
- **Ultrahigh Pressure Reactor (1000 bar)**
- **H-D exchange**

Length (m) range: **10⁻¹⁰** to **10⁻²**
HyMARC surface characterization capabilities include unique instrumentation to directly probe hydrogen on surfaces

Motivation:
Surfaces are believed to play an important role in hydrogen storage reactions; exact role and mechanisms remain unclear.

Technical Approach: *In-situ* techniques enable us to probe the surface chemistry for H₂ storage materials.

- **Low energy ion scattering (LEIS):**
 - Determine surface composition, H surface conc.
 - (First monolayer only, <1 nm)

- **Ambient pressure XPS:**
 - Characterize O, Na, Al, and Ti binding.
 - (Surface and near sub-surface, <10 nm)

- **Scanning trans. x-ray microscopy (STXM):**
 - Distribution of Ti within particles.
 - (Bulk)

What we can learn:
⇒ What is the exact surface composition of H₂ storage materials?
⇒ How do surfaces respond to temperature and H₂ environments?
⇒ What is the spatial distribution of species of interest?
⇒ Can surfaces be modified to improve H₂ storage properties?
Extended Characterization Capabilities

DRIFTS

Diffuse reflectance system coupled to cryostat and gas adsorption analyzer
Can collect data at 15-373 K and 0-100 bar (controlled dosing up to 1.2 bar)

Thermal Conductivity

H₂, He (other gases possible) from vacuum to 100 bar
Temperature Range: 40 K to 375 K
Sample types include solids & compressed pucks & powder

Variable Temperature PCT

Modified PCT Pro system with capabilities of hydrogen pressures up to 200 bar, and a controlled temperature range from 40 – 350 K. (other gases possible including CH₄)
High-pressure hydrogen station provides access to pressures in current fueling stations

- Up to 1000 bar H_2 and 400 °C
- Holds up to 4 different samples at once
- Employed for:
 - Synthesis of metal hydrides that cannot be synthesized in another way
 - Destabilization of $[B_{12}H_{12}]^{2-}$ and $[B_{10}H_{10}]^{2-}$ compounds
 - Hydrogenation of metal borides, e.g. MgB_2, MgB_2-etherates
 - Stability of hydrides and sorbents under high-pressure H_2
Synthetic capabilities: New sample formats for encapsulate complex hydrides, MgB$_2$ nanoparticles, graphene nanostructures

- **Atomic/Molecular** (0 – 1 nm)
 - Mg(BH$_4$)$_2$ film on Au for LEIS measurements

- **Molecular and microscales** (0.5 – 2 nm)
 - Model systems: GNR+(H$_2$ dissoc. catalyst)

- **Mesoscale** (2 - 100 nm)
 - MgB$_2$ nanoparticles
 - Encapsulation
 - Strain effects

- **Grains** (up to ~ 10 μm)
 - Nanoscaling

- **Macroscale/Bulk**
 - High-purity MOFs for model validation
 - New thermodynamics: Liquid-phase Mg(BH$_4$)$_2$
HyMARC has access to several user facilities

Joint experiments may be planned on a limited basis
Examples of experimental progress
NaAlH$_4$ surface chemistry understood using tools that probe the surface, near surface, and bulk material

Novel approach mixes AIMD with XPS simulations via LLNL/LBNL collaboration to interpret SNL AP-XPS and obtain a reliable picture of how surface chemistry evolves

Simulated XPS shows that past work has incorrectly assigned chemical species, which does not always follow oxidation state!

Near-surface region chemistry involves oxide film on Na$_3$AlH$_6$, which evolves as hydrogen enriches and then depletes during dehydrogenation
Understanding MgB$_2$ decomposition

HPC-enabled capability to directly observe chemical reactions upon hydrogenation of MgB$_2$ edges under high pressure illustrates competing pathways for B_xH_y formation.

- Utilized to improve strategies for performance/design of new materials

- AIMD simulations show that chemistry occurs preferentially at exposed edge planes, in agreement with our previous experiment-theory study
 Ray et al. *PCCP* 19, 22646, 2017

- Mg-rich edges lead to smaller molecules; B-rich edges lead to closo-borane formation
At low pressures spectra indicate only adsorption at Co$_2^+$ site (Site 1)

Secondary physisorption sites (Site 2) are populated after Site 1 is filled
Summary

HyMARC National Laboratory team activities

- Foundational research to accelerate materials discovery
- Development of advanced characterization tools
- Computational modeling across all relevant length scales
- Innovative material synthesis

HyMARC researchers collaborate and assist DOE-Fuel Cell Technologies Office Seedling projects

- Scientific expertise
- Joint experiments
- Access to cutting-edge capabilities when needed
- Validation measurements
Question and Answer

• Please type your questions to the chat box. **Send to: (HOST)**
Save the Date and Sign up for Our Newsletter

All relevant DOE offices and other federal agencies working on hydrogen and fuel cell technologies at Annual Merit Review (AMR)

2019 AMR – April 29 – May 1
Crystal City, VA
www.hydrogen.energy.gov

Sign up to receive hydrogen and fuel cell news and updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter
Thank you

Mark Allendorf
mdallen@sandia.gov

Thomas Gennett
thomas.gennett@nrel.gov

Eric Parker
DOEFuelCellWebinars@ee.doe.gov

Ned Stetson
Ned.stetson@ee.doe.gov

hydrogenandfuelcells.energy.gov
Additional slides if needed
Select onboard hydrogen storage targets

<table>
<thead>
<tr>
<th>Storage Parameter</th>
<th>Units</th>
<th>2020</th>
<th>2025</th>
<th>Ultimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Gravimetric Capacity
Usable, specific-energy from H₂ (net useful energy/max system mass)</td>
<td>kWh/kg (kg H₂/kg system)</td>
<td>1.5 (0.045)</td>
<td>1.8 (0.055)</td>
<td>2.2 (0.065)</td>
</tr>
<tr>
<td>System Volumetric Capacity
Usable, specific-energy from H₂ (net useful energy/max system volume)</td>
<td>kWh/L (kg H₂/L system)</td>
<td>1.0 (0.030)</td>
<td>1.3 (0.040)</td>
<td>1.7 (0.050)</td>
</tr>
<tr>
<td>Storage System Cost
$/kWh<sub>net</sub> ($/kg H₂)</td>
<td>$/kWh<sub>net</sub> ($/kg H₂)</td>
<td>10 (333)</td>
<td>9 (300)</td>
<td>8 (266)</td>
</tr>
<tr>
<td>Durability/Operability</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min/max delivery temperature °C</td>
<td>-40/85</td>
<td>-40/85</td>
<td>-40/85</td>
<td></td>
</tr>
<tr>
<td>Min/max delivery pressure Bar (abs)</td>
<td>5/12</td>
<td>5/12</td>
<td>5/12</td>
<td></td>
</tr>
<tr>
<td>Charging/Discharging Rates</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>System fill time Minutes</td>
<td>3-5</td>
<td>3-5</td>
<td>3-5</td>
<td></td>
</tr>
<tr>
<td>Minimum full flow (g/s)/kW of FC</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>Dormancy (at 95% of capacity)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min time to first release Days</td>
<td>7</td>
<td>10</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Max boil-off loss after 30 days %</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

For the complete set of onboard hydrogen storage targets, see: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles
Accurate Mg-B-H phase diagram prediction

- New method gives computed entropy and enthalpy within 3% and 12% of experiments, respectively, up from 11% and 50% for standard DFT
- Phase equilibrium between Mg(BH$_4$)$_2$ and MgB$_{12}$H$_{12}$ is correctly predicted to within 10 °C!