Savannah River Site General Separations Area Model Update

Greg Flach, PhD, PE
Advisory Engineer

Performance & Risk Assessment Community of Practice Technical Exchange Meeting
October 31, 2018
General Separations Area

- Upper Three Runs
- Z-Area Saltstone
- Fourmile Branch
- McQueen Branch
- E-Area Solid Waste
- H-Area Tank Farm
- F-Area Tank Farm

- Performance Assessments
- Composite Analysis
- D&D Analyses
Hydrogeologic Conceptual Model

UAZ = upper aquifer zone
AAA = A & AA horizons
TZ = transmissive zone
TCCZ = tan clay confining zone
LAZ = lower aquifer zone
GCU = Gordon confining unit
GAU = Gordon aquifer unit
General Separations Area Groundwater Flow Model, 1996-2004

- Well water level targets from ~1986 to mid-1996
- Hydraulic conductivity information
 - Pumping, slug tests
 - Laboratory-scale measurements
 - Mud fraction estimated from sediment cores at one foot resolution
- Initial 1996-1999 model ported to PORFLOW code in 2004
Motivations for Model Update

• Substantially more well water level data
 — Number of wells increased from 639 to 703, and many more records per well
 — Focus on 2004 – 2018 period, representative of future conditions
 • Low infiltration covers in place
 • Cessation of pump-and-treat operations at F- and H-Area seepage basins
 • Average rainfall period

• Plume data to guide calibration
 — Mixed Waste Management Facility VOC and tritium plumes

• Low-Level Waste Disposal Facility Federal Review Group (LFRG) recommendation to use PEST or comparable software for calibration
 — PEST originally written in 1994
 — Extensive development and mainstream use since then
 — LFRG secondary issue for 2008 E-Area Performance Assessment
Data Observations

• **Water table dropped by approximately 3 ft**
 – Implies slower groundwater speeds due to smaller hydraulic gradient

• **Lower average rainfall**
 – Implies lower recharge
 – Consistent with observed drop in water table

• **Shifts in groundwater flow directions near GW divide**
 – Lower rainfall?
 – Mixed Waste Management Facility (MWWF) and Low-Level Radioactive Waste Disposal Facility (LLRWDF) covers?
 – Old Burial Ground cover?
Model Changes

- General recharge reduced from 19 to 15 in/yr
- Recharge further reduced locally to reflect certain facility covers
- Upper aquifer zone (UAZ) subdivided into A/AA horizon and transmissive zones
- Traditional “layer-cake” model hydraulic conductivity field also considered
PEST Calibration Approach and Outcome

• Two structures for model conductivity field
 – Layer-cake, $K = \text{function}(z)$
 – Heterogeneous, $K = \text{function}(x,y,z)$ based on scattered conductivity data

• Two sets of well water level calibration targets
 – Unweighted
 – Weighted by data uncertainty and clustering

• Various zonation schemes

• PEST “parameter estimation” mode involving several parameters
 – Dictated by limited PORFLOW licenses

• Down-selected to layer-cake K and optimization with weighted targets
 – Similar goodness-of-fit
 • More parsimonious
 • Better agreement with hydrogeologic conceptual model and plume data
Diagnosis of Flow Direction Change and E-Area Impact

No OBG, MWMF, LLRWDF covers & +10% rain

OBG, MWMF, LLRWDF covers (2004-2014)

No OBG, MWMF, LLRWDF covers

OBG, MWMF, LLRWDF + future E-Area covers
Cone Penetration Sampling Locations at E-Area
Cone Penetration Sampling Data and Interpretation

Depth vs. Earea and MWMF

CPT 6 – no VOCs detected

<table>
<thead>
<tr>
<th>Depth</th>
<th>Elev</th>
<th>Tilt</th>
<th>11DCA</th>
<th>11DCE</th>
<th>DCE</th>
<th>TCE</th>
<th>PCE</th>
<th>ACET</th>
<th>MEK</th>
<th>MIBK</th>
<th>TTF</th>
<th>DCFM</th>
<th>TCFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>213</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>215</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82</td>
<td>204</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>193</td>
<td>136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>186</td>
<td>157</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>218</td>
<td>083</td>
<td>171</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>166</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>225</td>
<td>161</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>134</td>
<td>152</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>144</td>
<td>142</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

H-3 only = Earea

<table>
<thead>
<tr>
<th>Depth</th>
<th>Elev</th>
<th>Tilt</th>
<th>11DCA</th>
<th>11DCE</th>
<th>DCE</th>
<th>TCE</th>
<th>PCE</th>
<th>ACET</th>
<th>MEK</th>
<th>MIBK</th>
<th>TTF</th>
<th>DCFM</th>
<th>TCFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>219</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>69</td>
<td>214</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>69</td>
<td>207</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>193</td>
<td>136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>190</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>102</td>
<td>175</td>
<td>90</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>115</td>
<td>163</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>121</td>
<td>157</td>
<td>0.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>131</td>
<td>147</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

H-3 + VOC = MWMF

<table>
<thead>
<tr>
<th>Depth</th>
<th>Elev</th>
<th>Tilt</th>
<th>11DCA</th>
<th>11DCE</th>
<th>DCE</th>
<th>TCE</th>
<th>PCE</th>
<th>ACET</th>
<th>MEK</th>
<th>MIBK</th>
<th>TTF</th>
<th>DCFM</th>
<th>TCFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>63</td>
<td>213</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>71</td>
<td>215</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>82</td>
<td>204</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>93</td>
<td>193</td>
<td>136</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>200</td>
<td>186</td>
<td>157</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>218</td>
<td>083</td>
<td>171</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>120</td>
<td>166</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>225</td>
<td>161</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>134</td>
<td>152</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>144</td>
<td>142</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

SRNL-MS-2018-00196

We put science to work.™
GCU $K_v = 7.5e^{-5}$ ft/d With OBG and LLRWDF Covers (Current Conditions)
GCU $K_v = 7.5 \times 10^{-5}$ ft/d Without OBG and LLRWDF Covers (Earlier Conditions)
GCU Kv = 1.0×10^{-5} ft/d With OBG and LLRWDF Covers (Current Conditions)
GCU $K_v = 1.0 \times 10^{-5}$ ft/d Without OBG and LLRWDF Covers (Earlier Conditions)
Updated Model

- Reflects best available well water level records
 - 2004 to 2018 period
- Better agreement with plume data
 - MWMF / LLRWDF and Old Burial Ground
- Better agreement with Hydrogeologic Conceptual Model
 - Transmissive zone with higher K
- More representative of future, long-term, conditions
 - Average rainfall
 - Facility covers
- More parsimonious
 - Traditional layer-cake K field
- Uncertainty quantification through PEST
 - Parameter uncertainty
Insights

• Plume data are highly valuable for guiding model calibration
 – Pinned down Gordon confining unit vertical conductivity / leakance

• Flow direction sensitive near GW divide
 – Changes primarily due to more recent cover systems
 – Likely affects E-Area performance at 100-meter point of assessment due to increased plume overlap

• Beneficial to expose stakeholders to calibration process and intermediate results
 – Conveys greater understanding of model pedigree and uncertainty
 – Stakeholders better understand that there is no one answer (model) to be found
 – Rather, multiple possibilities (realizations) should be considered in Performance Assessment
Questions?