Akuna: An Open Source and High-Performance Workflow System for Simulation

Vicky Freedman, Erin Barker, Kevin Bensema, John Garza, Ellen Porter and Karen Schuchardt

Soil and Groundwater Program Manager

PA Community of Practice, October 30-31, 2018
Akuna

- Pre- and post-processing toolsets, job launching and monitoring
- Promotes collaborative modeling as users access files on shared server
- Job launching through the server makes for easy access to high-performance computing resources
 - Environmental Molecular Sciences Laboratory (EMSL) user access
- Open source, platform independent user environment written in Java
- Simulator agnostic
 - Amanzi
 - STOMP/eSTOMP
 - GEOSIM
Why Use Akuna?

• User interface for integrating conceptual site model
• Communication enhancement of model configuration and results
• Workflow streamlining
 ▪ Model setup, grid generation, conceptual model viewing, multiple simulation staging
 ▪ Ease of access to high performance computation
 ✓ Simulation controller(s) performs all job launching and reports run completion back to UI (Agni [Pau 2015] and MADS [Vessillnov et al. 2012])
 ▪ Ease of setting up geochemical reactive transport simulations
 ▪ Management of simulation and data provenance
• Linkange of multiple codes, where outputs from one code serve as inputs to the next code
Getting Started

Advanced Simulation Capability for Environmental Management (ASCEM) is a state-of-the-art approach that uses integrated toolsets for understanding and predicting contaminant fate and transport in natural and engineered systems. The Akuna platform is a powerful and flexible environment for modeling, simulation and analysis that enables users to easily:

- Setup conceptual and numerical models
- Execute simulations on laptops or supercomputers
- Visualize and analyze simulation results
- Full lifecycle data management, from site data to modeling results

Getting Started

- Take a Tutorial
- Browse My Projects
- Create a Team
- Report a Problem
- Get More Information on Akuna
My Workspace
Model Setup Toolset
Geochemistry Interface
Simulation Toolsets

- Single-Run (SR)
- Sensitivity Analysis (SA)
 - Local Method
 - Morris-One-At-a-Time (MOAT)
- Parameter Estimation (PE)
- Uncertainty Quantification (UQ)
 - Monte Carlo
 - Markov Chain Monte Carlo
UQ Toolset – Parameter Selection

Parameter Selection Interface:
- Analysis Specifications
 - Analysis method: Monte Carlo
 - Parameter(s) 1: perm1
 - Prior value: 1.9876E-13 m²
 - Initial value: 1.9E-13
 - Type: Logarithm
 - Distribution: Normal
 - Parameter(s) 2: perm2
 - Prior value: 6.9365E-12 m²
 - Initial value: 6.9E-12
 - Type: Logarithm
 - Distribution: Normal
 - Parameter(s) 3: perm3
 - Prior value: 2.0706E-10 m²
 - Initial value: 1.9E-10
 - Type: Logarithm
 - Distribution: Normal

Summary:
- Geo-logic Domain
- Domains
- Mesh
- Specify Uniform
- Number of blocks
- Block size
- Transport Schemes Patankar
- Reactions
- Solve Tc-99
- Initial Conditions
- Initial Saturation Aqueous Pressure - G

Status:
If you select any reference node variables, you must also specify the regions.
Analysis – Akuna Plotting Toolset

• Quick 2D plots of multiple simulations
 ▪ JFreeChart
 ▪ Line plots, histograms, scatter plots
 ▪ Parameters, simulated and measured data
Visualization Access

- Option available for downloading plot files to local machine
- Selection of visualization software
 - VisIt
 - Paraview
 - Tecplot
GEOSIM
Model Linkages (GEOSIM + eSTOMP)

• Describes channel belts of abandoned braided rivers [Scheibe and Freyberg (1995), Ramanathan et al. (2010) and Guin et al. (2010)]

• Described in terms of
 ▪ Shapes of discrete bed forms
 ▪ Trends in grain size
 ▪ Spatial relationships of defined geologic facies

• Geologically realistic distributions of heterogeneity
 ▪ Size of model domain and spatial resolution of heterogeneous features are controlled by user
 ▪ Useful as numerical testbeds to evaluate the potential impacts of multiscale heterogeneity on subsurface flow and reactive transport
GEOSIM

• Compound Bar Generation
 ▪ Serial determination of number of compound bars
 ▪ Creates locations of compound bars and cross-bar channel fills

• Unit Bar and Cross Strata Generation
 ▪ Generates hierarchical stratigraphic units within each compound bar
 ▪ Execution is embarrassingly parallel

• Domain construction
 ▪ Integrates individual compound bars and subunits into cohesive domain using domain decomposition
 ▪ User specifies domain boundary and voxel size
 ▪ Each voxel is assigned an indicator based on location and textural class

• Post-processors
 ▪ Ind2vtk
 ✓ Processes output for visualization 28 “material types”
 ▪ ind2STOMP
 ✓ Translates Ind2vtk output to textural classes for eSTOMP/STOMP

5 realizations resulting from the same GEOSIM input
Compound Bars
Unit Bars
Cross-Stratified Deposits
Indicator Mapping
Job Control Panel
Results Visualization
GEOSIM Transition to eSTOMP
Heterogeneity Example Simulation

- Import files into eSTOMP model setup
 - Auto-generation of materials file and grid description
Simulation Description

• Fully saturated
• Groundwater flow is from west to east
• Homogenous property distributions for like-textural classes
• Conservative tracer applied as a 100-day boundary condition (concentration 10 molar) in the upper central region of the western boundary
• 3000 days of simulation

Region definition visualization using Akuna Model Setup Visualization Tool
Tracer Transport

Time = 5 day
Summary

- Akuna is open-source, cross-platform, and designed to support multiple simulators
- Akuna framework provides complete tracking of workflow for subsurface flow and transport simulation
- Supports seamless exploitation of supercomputing resources
- Web page: akuna.labworks.org

