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•  Global initiative  

–  UN Climate Change Conference 2015 (Paris) 
–  23 Member Nations + European Union  

•  (80% of  global clean energy R&D Budget) 

•  Goal: Double government/state-directed clean 
energy R&D over five years.   

–  Target: $30B USD/year in 2021 
–  Private sector collaboration 

•  http://mission-innovation.net 



Eight Innovation Challenges 
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Mission	Innova=on	Challenge	6:	
Integrated	materials	design	plaEorm	
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The	workshop	drew	133	a0endees:		h#p://mission-innova/on.net/2017/09/19/ic6-deep-dive-workshop/	
●  55	professors	and	scien=sts	from	top	universi=es	and	research	ins=tu=ons;	
●  6	keynote	speakers	and	panellists,	including	Nobel	Laureate	Dr.	Mario	Molina;	
●  16	MI	member	governments	represented:	Australia,	Canada,	Denmark,	Finland,	France,	Germany,	European	

Union,	India,	Italy,	Korea,	Mexico,	Netherlands,	Norway,	Saudi	Arabia,	United	Kingdom,	and	United	States;	
●  affiliates	of	Mexico-	and	U.S.-based	universi=es,	groups,	labs,	and	companies;	
●  graduate	students	and	postdoctoral	researchers;	and	observers	from	different	countries 

Mexico	City,	Sept	2017	



An	integrated	pla:orm	for	materials	discovery	

Materials	Genome	Ini=a=ve	1.0	
2011	
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Opportunity:		
We	need	to		strongly	couple	AI,	robo=cs	with	computa=onal	materials	genomics	approaches	

A	“self-driving”	laboratory	is	one	possible	goal	



Materials	Accelera.on	Pla:orms	(MAPs)	
Workshop’s	main	recommenda.on	
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1.	Closing	the	loop	

2.	AI	for	Materials	
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4.	Inverse	Design	

5.	Bridging	Length	and	Timescales	

6.	Data	Infrastructure	and	Exchange	
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Integrate	powerful,	yet	usually	separate	elements	
of	materials	design,	synthesis,	and	characteriza=on	
in	a	closed	loop.		

1.	Closing	the	loop	



Benji	Maruyama	
Air	Force	Research	Laboratories	

1.	Closing	the	loop	



2.	AI	for	Materials	



Offline	experiments	
~20	reac=ons	per	day	
(Haverford	College)	

Semi-autonomous	experiments	
~200	reac=ons	per	day	
(Molecular	Foundry)	

Need:	Digital	experiment	plans	across	diverse	lab	environments	
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Offline	experiments	
~20	reac=ons	per	day	
(Haverford	College)	

Semi-autonomous	experiments	
~200	reac=ons	per	day	
(Molecular	Foundry)	

Fully-autonomous	experiments	
104	reac=ons	per	day	
(Emerald	Cloud	Lab)	

Need:	Digital	experiment	plans	across	diverse	lab	environments	

1.	Closing	the	loop	



Need:	Programming	language	for	experiments	

1.	Closing	the	loop	



Need:	Programming	language	for	experiments	

1.	Closing	the	loop	



Need:	Programming	language	for	experiments	

1.	Closing	the	loop	



Autonomous	research	relies	on	reasoning,	
decision	making,	and	crea=vity.		

The	par=cular	scale	and	details	of	
theore=cal,	computa=onal,	synthe=c,	and	
characteriza=on	evidence	in	materials	
research	require	the	establishment	of	this	
new	branch	of	AI.		

Na=onal	and	interna=onal	research	
organiza=ons	must	facilitate	an	integrated	
computer	and	materials	science	research	
effort	to	develop	algorithms	that	mimic,	
and	then	supersede,	the	intellect	and	
intui=on	of	expert	materials	scien=sts.		

AI-controlled	chemical	laboratory	
Jason	Hein,	University	of	Bri=sh	Columbia	
Alan	Aspuru-Guzik,	Harvard	University	

2.	AI	for	Materials	



Roch,	et	al.	ChemRXiV:5953606	(2018)	



Cronin	&	co.		DOI:	10.1021/acscentsci.8b00176	

2.	AI	for	Materials	



Importance	of	interpretability—”machine	rhetoric”	

2.	AI	for	Materials	

Friedler,	Norquist,	Schrier	DOI:	10.1038/nature17439	



How	can	we	achieve	exponen.al	efficiency	growth?	
To	achieve	scale,	use	a	modular	approach	

Sears	Tower	

Burj	Khalifa	



Autonomous	laboratories	must	
remain	nimble	and	mo=vate	a	
modular	approach	to	the	
development	of	materials	science	
automa=on.		

Represen=ng	techniques	and	
materials	as	modular	“building	
blocks”	fosters	human-machine	
communica=on	and	simplifies	
materials	explora=on.	

The	Synthesis	Machine	
Marty	Burke,	University	of	Illinois	at	Urbana	Champaign	

3.	Modular	Materials	Robo=cs	



The	Synthesis	Machine	
Marty	Burke,	University	of	Illiniois	at	Urbana	Champaign	 3.	Modular	Materials	Robo=cs	

Burke et al Science 2015, 347, 1221-1226
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Burke et al Science 2015, 347, 1221-1226

A	similar	approach	for	materials	

Sequence

Build

Assemble



Inverse	design	enables	automated	genera=on	of	candidate	materials	designed	to	
meet	the	performance,	cost,	and	compa=bility	requirements	of	a	given	clean	energy	
technology.	

4.	Inverse	Design	
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Autoencoders for chemical space 

R. Gomez-Bombarelli, et al ACS Central Science (2018) 10.1021/acscentsci.7b00572  



5.	Bridging	Length	and	Timescales	
Materials	systems	frequently	
demand	understanding	and	control	
of	proper=es	that	span	10-orders	of	
magnitude	ranges	of	length	and	
=me	scales.		

Exis=ng	experimental	and	
computa=onal	methods	provide	a	
view	of	a	small	part	of	this	range.			

Propose:			
ML	as	the	“glue”	between		these	
methods—replace	human	
exper=se.	



6.	Data	Infrastructure	and	Exchange	
The	Materials	Project	

Pi0	Quantum	Repository	

Harvard	Clean	Energy	Project	

AFLOW-lib	and	AFLOW-ml	

What	we	know	how	to	do:		
Highly	structured	databases	of	results	



Challenge:	
Extrac=ng	data	from	unstructured	natural	
language	sources—literature,	lab	notebooks,	
“dark”	reac=ons	

Friedler,	Norquist,	Schrier	DOI:	10.1038/nature17439	

6.	Data	Infrastructure	and	Exchange	

E.	Oliveq	@	MIT	DOI:	10.1021/acs.chemmater.7b03500	
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Follow-up workshops 
•  Expert Workshop: Structural Materials and 3D Printing 

–  (March 2018, Hamilton, Canada) 
–  http://ic6-2.mission-innovation.net/ 

•  Industry Meeting: Self-Driving Materials Laboratories: The 
Next Paradigm for Accelerated Discovery 

–  (May 2018, Toronto) 
–  http://ic6-3.mission-innovation.net/  



Learn more! 

http://mission-
innovation.net/our-work/
innovation-challenges/
clean-energy-materials-
challenge/ 

And download the report!  



Thank you!  

Questions? 


