Timing Authentication Secured by Quantum Correlations (TASQC)

Oak Ridge National Laboratory (ORNL)

Phil Evans

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018
Summary: TASQC

Objective

- Provide an energy-centric secure timing distribution and message broadcast capability that complements, and could replace, GPS

Schedule

- **Start:** January 2015
 End: September 2019
- IAB Formed: Q3 FY15
- Base system demo: Q4 FY15
- Message passing: Q1 FY16
- 2-way time transfer: Q2 FY16
- Demonstrations: ongoing
- **Capabilities realized:**
 Secure time distribution and synchronization for time-aware/sensitive grid networking and applications

Total Value of Award: $2,998M

Funds Expended to Date: % 99

Performer: Oak Ridge National Laboratory

Partners:
- Pacific Northwest National Laboratory
- Sandia National Laboratories
- University of Texas Austin
- Qubitekk, Inc.
- Electric Power Board (EPB)
There is no alternative source of secure time distribution for the grid

- GPS is widely used. **GPS is vulnerable to spoofing!**
- eLORAN can provide < 100 ns timing. Additional trials scheduled for 2019/2020

GPS is vulnerable because the signals are well known

- One-way time distribution will **always** be susceptible to reply attacks
- Security requires no **a priori** information on signal structure → total randomness
- Can true randomness be used for secure time distribution with 2-way communication?

TASQC – Timing Authentication Secured by Quantum Correlations

- Backbone of QKD-connected base stations – *generate and share random keys*
- Trusted clock source & time synchronization between base stations – *act as verifiers*
- Base system technology to demonstrate variety of protocols on – *timing, message passing, etc.*
Advancing the State of the Art (SOA) 2

- **Feasibility:** proof-of-concept has been demonstrated
 - Requires existing dark fiber optic and RF/wireless infrastructure

- **Benefits:**
 - Time signals are encrypted with quantum keys and one-time pad: **secure**
 - The stakeholder controls the system: **no reliance on third parties**
 - Flexibility: not just limited to time
 - Secure messaging capability, i.e., notifications of leap seconds
 - Increasingly complex suite of protocols for YOUR needs

- **Operational requirements:**
 - Meets 1μs timing requirement for PMUs – IEC C37.118-2005
 - Has IEEE-1588 and IRIG-B timing output for distribution to existing devices

- **Cybersecurity:**
 - Resilience against GPS interference and spoofing; satellite & space weather events
Progress to Date

- **3Q FY15:** Industry Advisory Board (IAB) Formation
- **4Q FY15:** Base System
 - Task 1.8 (Milestone) Base Protocol Burn-in Testing @ ORNL ✓
 - Task 1.11 (Go/No Go) Prototype Testing @ PNNL ✓
- **FY16:** Protocol Demos & Hardware Modifications
 - Task 2.1 Encrypted code word ✓
 - Task 2.2 Anti-Replay attack (aka 2-way secure time distribution) ✓
 - Task 2.4 Communications task ✓
- **1Q FY17:** IEEE-1588 & IRIG-B output
 - IAB recommendation
- **3Q FY17:** Demo with Chip-scale QKD systems
 - Conducted on-site at SNL
- **FY18:** Preparations for final utility demonstrations
Challenges to Success

Mutual Understanding – Needs & Technologies
- Aligning needs and requirements
- Multi-faceted team with broad knowledge base
- Outreach, webinars, meetings

Absolute trust in GPS
- “GPS is vulnerable and you need alternatives!”

Availability of Suitable Optical Fiber Infrastructure
- Quantum requires low-loss, dark/unlit fiber runs.
- No optoelectronics

Use of ‘open’ RF bands, e.g., 900 MHz ISM, is noisy
- Focus on RF development: work on error correction, spread-spectrum techniques to recover signal
- Partnerships with utilities with owned spectrum
Collaboration/Technology Transfer

- Software developed is open source
- Qubitekk is our industry partner
 - TASQC is compatible with current and future Qubitekk systems
- Asset owners are most likely end users
- Plans to gain industry acceptance:
 - Utility-hosted field tests and demonstrations
 - Adopting current standards
 - Enabling technology for other grid applications