Quantum Physics
Secured Communications for the Energy Sector
Oak Ridge National Laboratory (ORNL)

Nicholas A. Peters

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018
Objective

• Decrease cost (Bing Qi), and increase distance (Phil Evans), of Quantum Key Distribution systems that enable real-time detection of adversarial intrusion on control system networks.

Schedule

• 12/05/17-09/30/2020

• Engage utility and supplier industry partners

• Utility site selected for Y1 demo

• Demonstration at a utility of a trusted node relay between two different types of QKD

Total Value of Award: $2,098,640

Funds Expended to Date: 23%

Performer: ORNL

Partners: LANL, Electric Power Board of Chattanooga (EPB), Optoplex
Advancing the State of the Art (SOA)

• QKD is distance-limited: optical channel loss exponentially reduces secret key rate.
 • Quantum repeaters are proposed fix but are far away.

• SOA: Trusted-node QKD extends the distance
 • Implemented in various research demonstrations
 • Never implemented on an energy grid

• QKD backbone network (e.g., power transmission)
 • Delivers keys for authentication and other security tasks
 • Can build more complex local area networks (e.g., power distribution [EPB]).
Advancing the State of the Art (SOA) II—CV-QKD

- CV-QKD implemented with “classical devices” (lasers and homodyne detectors)
 - Potentially cost-effective: CV-QKD is resilient against background noise
 - SOA CV-QKD uses specially designed, “home-made” devices → not suitable for large-scale applications
- Our approach: leverage commercial optical coherent communications system for CV-QKD
 - If successful, commercial coherent communications system could operate in either a classical or quantum communications mode
- Feasibility: quantum and classical coherent communication systems are similar but optimized differently
 - The classical detectors approach the quantum noise limit
 - Classical system has less stringent requirements than quantum system
- Output: a cost-effective building block for constructing semi-trusted QKD network, which can provide long-term security for energy delivery systems.
Challenges to Success

Challenge 1: Dark fiber is a start, but there are other requirements
 • Collaborate with network engineers to realize quantum link layer

Challenge 2: Disparate QKD systems: operating conditions, key rate, wavelength, etc.,
 • Develop QKD-agnostic software layer to handle all key transactions

Challenge 3: Existing commercial coherent receiver needs improvements to become “quantum grade”
 • We are working with a commercial vendor (Optoplex) to develop a compact, low-noise conjugate homodyne detector based on their existing product

Challenge 4: Existing commercial coherent transmitter does not support CV-QKD modulation format
 • We are developing a passive CV-QKD scheme with no active modulation.
Progress to Date

Major Accomplishments

- TN software demo using hop-by-hop technique
 - Implemented on laptops, moving to Raspberry-pi and MOXA hardware
- Partnership with EPB (subcontract in process)
- Joint ORNL & LANL demo plan for late 2018-early 2019 at EPB
- Collaboration with Optoplex resulted in a compact receiver for CV-QKD.
 - Purchase order issued.
- High-speed FPGA ADC/DAC devices acquired for system control and measurement.
 - Associated software developed
- Automatic bias control for intensity modulator demonstrated.
Collaboration/Technology Transfer

- Transferred CV-QKD receiver knowledge to Optoplex (Vendor)
- Transferred quantum-link layer requirements to EPB (electric utility and fiber optic network operator)
- Test plans to gain industry acceptance:
 - 12 months: Trusted node relay demonstration at a utility between two different types of QKD (interoperability)
 - 22 months: Demonstration of end-to-end key generation across two trusted nodes (three QKD systems)
 - 24 months: Trusted node relay demonstration at a utility yielding a higher secret bit rate than a single QKD system over the same distance
 - 36 months: Demonstration of end-to-end key generation across four trusted nodes (five QKD systems) at a partner utility site
 - 36 months: Demonstrations of CV-QKD and raw-key based authentication scheme at a partner utility site
Next Steps for this Project

Approach for the next year

- Demonstrate trusted relays at increasing levels of complexity
- Experimental confirmation of Optoplex “quantum grade” receiver performance leading to construction of cost-effective coherent communication system to demonstrate classical communication and CV-QKD on same hardware
- Feasibility study of chip-size integration of CV-QKD
- Explore authentication protocols using shared imperfect randomness (rather than secure key)
Alice’s electronics:
- Sample the random noise from a quantum random number generator
- Transform the random noise into Gaussian random numbers
- Calculate amplitude and phase modulation voltages corresponding to random numbers
- Output the modulator drive signals

Bob’s electronics:
- Sample the conjugate homodyne detector
- Perform data processing including synchronization and quadrature value calculation
- Implement polarization feedback control
Modulator Bias Controller

Provides a control voltage to compensate modulator bias-point drifts.

Two are needed at Alice’s side to maximize the extinction ratio in pulse generation and amplitude modulation.