Multi-layered Resilient Microgrid Networks

ABB Inc.

Dmitry Ishchenko

Cybersecurity for Energy Delivery Systems Peer Review

November 6-8, 2018
Summary: Multi-layered Resilient Microgrid Networks

Objective

• Research, develop, and demonstrate cyber-physical resilient control and protection architecture for a multi-microgrid power system

Schedule

• 10/2016-10/2019
 • Threat analysis - Done
 • Control and communication architectures design and lab-scale implementation - Done
 • Capability: Cyber secure communication and control platform supporting a heterogeneous ecosystem of microgrids, with connections to both utility and peer microgrids

Total Value of Award: $ 3,098,964
Funds Expended to Date: 52.1%

Performer: ABB Inc.
Partners: University of Illinois, Duke Energy
Advancing the State of the Art (SOA)

• SOA solutions are mostly associated with addressing the operational and security challenges of a single microgrid
• Our approach extends microgrid P&C and communications to multi-microgrid networks to incorporate an added layer of intelligence at the grid edge
• Enable higher DER penetration levels and increased grid resiliency through improved DER asset utilization
• We are building on top of open standards (IEC 61850, CIM and OpenFMB) to ensure industry acceptance
Advancing the State of the Art (SOA)

- First principle based cyber threat detection and mitigation mechanisms
- Respect local microgrid information privacy to address varying microgrid ownership models
- Major project use cases and OpenFMB/GOOSE adapters contributed to the community
- Leveraging DER assets in multiple microgrids in a coordinated manner helps to increase power grid reliability, resiliency and power quality

From local benefit to grid support
Challenges to Success

Maintaining local microgrid privacy

- Only exchange state estimates with the neighbor microgrids as opposed to full network model/topology

Heterogeneous communication networks currently deployed

- Flattening communication profiles with OpenFMB/SDN extensions

Algorithm performance must be fast

- Leveraging peer-to-peer publisher subscriber model minimizing the overhead and implementing QoS for various performance classes
Major Accomplishments

- Derived control and communications architecture based on open industry standards (IEC 61850/CIM/OpenFMB)
- Implemented lab-scale proof of concept prototype for major project use cases
- Control and power real-time hardware in the loop implementation
- Federated real-time co-simulation testbed to support multi-microgrid use cases
Collaboration/Technology Transfer

Plans to transfer technology/knowledge to end user

- What category is the targeted end user for the technology or knowledge?
 - Asset owners
 - Utilities
 - Vendors

- What are your plans to gain industry acceptance?
 - Field demonstration with Duke Energy support
 - Providing inputs to IEC/IEEE/OpenFMB Users Groups
 - Information models supporting project use cases released to the community
Next Steps for this Project

Approach for the next year or to the end of project

- Field demonstration with algorithm tuning as needed in the second quarter of 2019

- Dissemination of results through IEEE/IEC/UCAIuG
Ontology Based Threat Modeling

- Ontology defined based on the IEC 61850/CIM/OpenFMB Model
- Extend adversary modeling framework ADVISE to comprehend cyber-physical aspects
- Automatic generation of attack execution graphs from block diagram system definition (Mobius Origin Model)
- Identify critical components (those on multiple critical attack paths)
- Can be a basis for mitigation strategy
Frequency Control and Reachability Analysis

- Challenges in maintaining microgrid frequency stability
 - Scarce generation resources
 - Varying renewable energy generation
 - Low physical inertia for frequency damping
 - Solution: distributed secondary frequency control based on local measurements, robust against link failure and attack

- Reachability Analysis
 - Find envelope on the solution trajectories for all possible parameter/input variations due to spoofed measurement/control
Secure Distributed State Estimation

- Communications within microgrid: IEC 61850 GOOSE
- Microgrid-to-microgrid communication with OpenFMB/DDS with SDN extension
- Supervisory microgrid controller (MicroSCADA/COM600) implements
 - Secure Distributed SE
- State estimation as input into Microgrid EMS and other functions
- Secure DSE detects cyber issue in Microgrid 1
- Isolate Microgrid 1 from the rest of the system with SDN and (optionally) physically disconnect
Thank You!
Questions?