

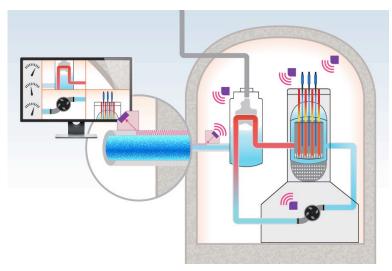
Transmission of Information by Acoustic Communication along Metal Pathways in Nuclear Facilities

Advanced Sensors and Instrumentation Annual Webinar

October 31 – November 1, 2018

Alexander Heifetz, Richard Vilim Argonne National Laboratory

Project Overview

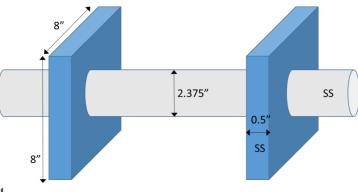

Goal and Objective

- Demonstrate ability to transmit information through physical boundaries at a nuclear facility
- Participants (2018)
 - Alexander Heifetz, Xin Huang (ANL/IIT), Roberto Ponciroli, Jacey Young (SULI, St Norbert College), Dmitry Shribak (SULI, U Chicago), Sasan Bakhtiari, Jafar Saniie (IIT), Richard B. Vilim

Schedule

- Y1: developed system requirements and implemented ultrasonic communication setup
- Y2: demonstrated sound, text, and image transmission using low-temperature PZT and EMAT
- Y3: working towards power-efficient data transmission using high-temperature ultrasonic transducers

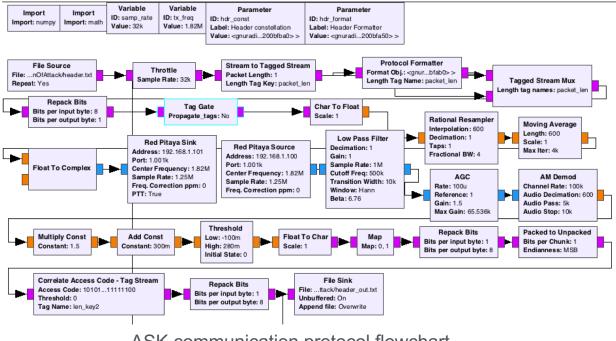
- Developed System Specification
 - Focused on acoustic transmission of information in an out of the containment building
 - Containment walls are 4 to 5 feet thick concrete with steel liner
 - Blocks RF transmission
 - Proposed acoustic communication system at a nuclear facility would transmit information on steel pipes already in place for nuclear reactor operation


Developed System Specification

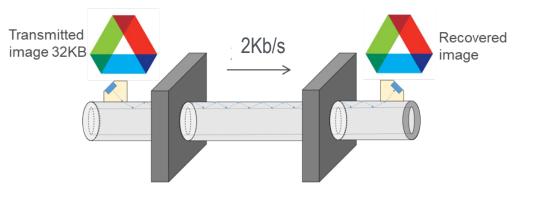
- Identified charging line stainless steel pipe of chemical volume control system (CVCS) as viable conduit for information transmission in and out of containment building
 - Pipe penetrates containment wall through a tunnel in concrete sealed on both ends by steel plates
- Transducer operating conditions are specified by containment isolation function

Parameter	Normal	Accident
Temperature	50-120 °F	300 °F
Pressure	atmospheric	70 psig, max
Relative Humidity	30-100 %	100 %
Radiation	50 rads/hr	150 Mrads/hr

Typical environmental stresses on containment isolation function components


- Developed test article for proof-ofprinciple studies
 - Schedule 160 stainless steel pipe with baffle plates to simulate mechanical constraints at actual NPP
 - Demonstrated resilience of ultrasonic data transmission over pipe to low frequency noise
 - Experimentally simulated process noise with mechanical shaker vibrating a pipe
 - Vibrated pipe with 100Hz, 1KHz, 10KHz
 - Observed no interference effect on ultrasonic 2MHz shear wave informationcarrying signal

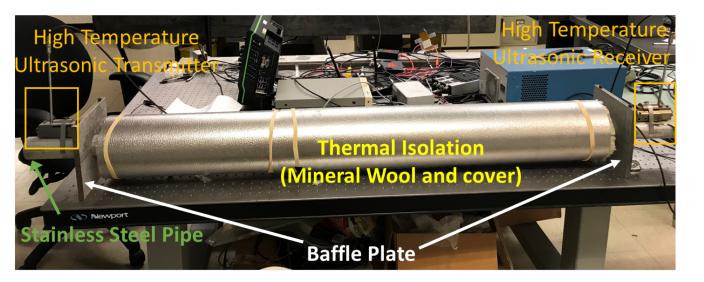
Frequencytunable mechanical shaker in contact with pipe

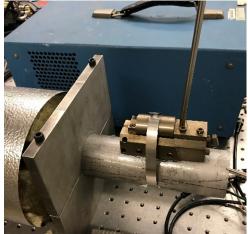

- Demonstrated information tramsmission
 - Developed amplitude shift keying (ASK) communication protocol using GNURadio software defined radio environment

ASK communication protocol flowchart

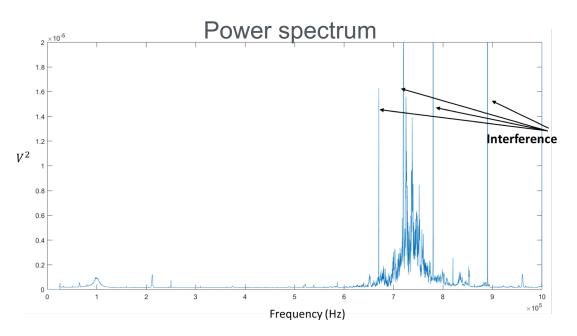
- Demonstrated information transmission
 - Demonstrated image and text file transmission with 1.8MHz frequency shear wave at 2Kb/s data rate across 5 foot-long pipe
 - Demo performed during Digital Environment for Advanced Reactors Workshop at ANL on June 5

Schematics of communication system setup for image transmission on a pipe

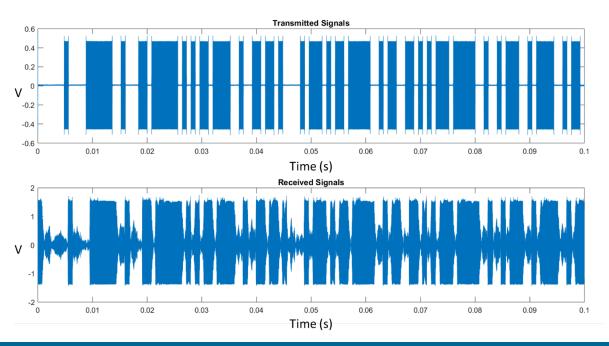

Text file transmission


	- 🗆 🗙 📃 helloworld - Notepad - 🗆
File Edit Format View Help	File Edit Format View Help
hello world!!	<pre>hello world thello world thello world thello world thello world thello world thello world thello world thello world thello world thello world thello world thello world thello world thello world thello world thello world t</pre>

Transmitted file

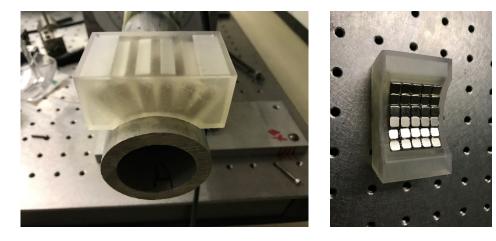

Received file

- Transition to high-temperature ultrasonic transducers
 - Shear wave ultrasonic transducers originally developed at Argonne for EBRII liquid sodium flow metering applications
 - LiNbO₃ high-temperature crystal in stainless steel case
 - Couples to metallic pipe with copper foil



- Information transmission with high-temperature transducers
 - Evaluated frequency response of transducers separated by 170cm on a pipe
 - Maximum frequency response is around 750KHz
 - Spikes are likely caused by electromagnetic interferences

- Information transmission with high-temperature transducers
 - Evaluated on off keying (OOK) modulation signal transmission
 - Transducers separated by 170cm on a pipe
 - Carrier frequency is 728 kHz
 - Bit pulse duration is 200 µs



- Image transmission results
 - Used the ASK transmission protocol in GNURadio environment
 - Transducers separated by 170cm on a pipe
 - Carrier frequency is 728KHz
 - Bit pulse duration is 400µs (2.5Kb/s data rate)
 - Errors in approximately 10% of bits

Next steps

- Improvement of communication protocol to reduce error rate
- Power-efficient transmission of data
 - Without power amplifier on the transmitter side
 - Low noise amplifier used on the receiver side
- Transmission of data on heated pipe
- Development of custom EMAT with contoured surface for better signal coupling

Deliverables

- A. Heifetz, X. Huang, R. Ponciroli, J. Young, D. Shribak, S. Bakhtiari, J. Saniie, R.B. Vilim, "Second Annual Progress Report on Transmission of Information by Acoustic Communication along Metal Pathways in Nuclear Facilities," ANL-18/35, September 30, 2018.
- A. Heifetz, X. Huang, D. Shribak, S. Bakhtiari, J. Saniie, R.B.
 Vilim, "Analysis of Achievable Rates of Communication," ANL-18/27, August 31, 2018.
- A. Heifetz, J. Young, X. Huang, S. Bakhtiari, J. Saniie, R.B. Vilim, "Acoustic Channel Link Models for Digital Communication Protocols," ANL-18/25, August 15, 2018.
- A. Heifetz, R. Ponciroli, X. Huang, B. Wang, J. Saniie, S. Bakhtiari, R.B. Vilim, "Ultrasonic Link Model Development," ANL/NE-18/7, March 30, 2018.(List description of milestones, deliverables, outcomes for FY18)

Publications/Presentations

- A. Heifetz, X. Huang, R. Ponciroli, S. Bakhtiari, J. Saniie, R.B. Vilim, "Acoustic Communication Over Metal Pipes in Nuclear Facilities," submitted to ANS 111th Nuclear Plant Instrumentation, Control and Human-Machine Interface Technologies (NPIC&HMIT), 2019.
- A. Heifetz, R. Vilim, S. Bakhtiari, "Transmission of Information by Acoustic Communication along Metal Pathways in Nuclear Facilities," to be presented at International Mechanical Engineering Congress and Exposition (IMECE), Pittsburgh, PA, November 2018.
- B. Wang, J. Saniie, S. Bakhtiari, A. Heifetz, "Software Defined Ultrasonic System for Communication through Solids," presented at 17th IEEE International Conference on Electro Information Technology, Rochester, MI, May 2018.
- X. Huang, J. Saniie, S. Bakhtiari, A. Heifetz, "Application of EMAT to Ultrasonic Communication Through Steel Plates and Pipes," presented at 17th IEEE International Conference on Electro Information Technology, Rochester, MI, May 2018.

Technology Impact

- Advances the state of the art for nuclear application
 - Provides capability to transmit information across physical barriers at a nuclear facility using in-place piping infrastructure
- Supports the DOE-NE research mission
 - Develops new means of secure and accident-resilient communication at a nuclear facility applicable to different reactor types
- Impacts the nuclear industry
 - Helps to increase safety of existing and future nuclear power plants
- Will be commercialized
 - US Patent Application 15/947,303 has been filed by A. Heifetz, R.B. Vilim, S. Bakhtiari in 2018.

Conclusion

- Demonstrated information transmission on nuclear grade stainless steel pipe using ultrasonic transducers
 - Developed communication protocol using GNURadio environment
 - Demonstrated transmission of 32KB images at 2Kb/s data rate
 - Present efforts are aimed at demonstrating power-efficient data transmission using high-temperature ultrasonic transducers
- Contact Information
 - <u>aheifetz@anl.gov</u>
 - 630-252-4429

Clean. Reliable. Nuclear.