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Advanced Gas Reactor (AGR) Fuel Development

and Qualification Program

AGR Program: Provide data for fuel qualification in support of reactor licensing
* AGR fuel compact irradiation in ATR monitored by thermocouples
« Supplemental instrumentation added to test instrumentation performance
« High Temperature Irradiation Resistant Thermocouple
» Ultrasonic Thermometer
» Optical Fiber Temperature Sensor
« Self Powered Neutron Detectors and Micro-Pocket Fission Detectors
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HTIR —Thermocouple: Background/Theory

R Skifton (INL)

« The High Temperature Irradiation Resistant Thermocouple (HTIR-TC) consists of
a molybdenum niobium thermocouple junction.

« The use of dissimilar metals put through a temperature gradient generates
electromotive force (EMF).

« The HTIR-TC is the first of it’s kind that has successfully shown to last for 1,000’s
of hours at low signal de-calibration of ‘drift’.
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HTIR —Thermocouple: Fabrication / Installation

R Skifton (INL)

 The HTIR-TC was fabricated and tested at High Temperature Test
Laboratory (HTTL) before going into the AGR 5/6/7 test.

« 20+ HTIR-TCs were able to be successfully installed (brazed) into the AGR
5/6/7 test trains.

High Temperature Testing in Furnace (Out of Pile).
Shows very low drift over 1,000s of hours.
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HTIR —Thermocouple: Performance Update

R Skifton (INL)

« HTIR-TCs in the AGR 5/6/7 test have successfully and consistently read
temperatures up to 1450°C for several reactor cycles.

* They return to these temperature levels after many reactor shut downs and
startups

« The HTIR TC has a wide range as they match the reactor control TCs during
a reactor shut down phase.
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Ultrasonic Thermometer: Background/Theory

J Daw (INL)
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Ultrasonic Thermometer :

Waveguide sheath
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Fabrication / Installation

J Daw (INL)
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Ultrasonic Thermometer : Performance Update

J Daw (INL)

To date the AGR 5/6/7 has followed the same temperature trends as nearby thermocouples, but
with reduced noise

« Improved signal processing method using up-sampling and spline interpolation accounts
for reduced noise levels compared to previous UT tests

» Surprising result considering low temperature sensitivity of molybdenum and short
length of sensor section

* Recent data shows intermittent loss of signal at low temperatures
« Likely issue with mechanical robustness of coil materials
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Optical Fiber Temperature: Background/Theory

K McCary (INL)

 Fiber Bragg gratings are a periodic variation in the fiber core index of refraction that allow
specific wavelengths of light to be reflected.

« The peak wavelength of a Bragg grating shifts with changes in temperature and strain. As an
unconstrained fiber is heated the shift in the reflected wavelength of the grating can be
correlated to temperature change.
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Optical Fiber Temperature: Fabrication / Installation

K McCary (INL)

There are two optical fiber sensors installed in capsule #5 at the top of the ATR fuel.

Fiber optic
Sensors

» CEA supplied sensors

[ il | » One of the sensors was broken during installation.

|1 " | . » The second sensor was incorrectly connected initially
| ' e » Capsule #5 has seen temperatures around 700°C

 Standard telecommunication fiber with germanium doped cladding is contained within a
metal capillary tube

« Type-l regenerated Bragg gratings are heat treated for high temperature resilience

 Each fiber has 5 fiber Bragg gratings 3 cm apart for 5 temperature measurements in 12cm

 Gratings #1 and #2 are at a lower temperature and flux above the ATR fuel.
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Optical Fiber Temperature: Performance Update

K McCary (INL)
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SPNDs: Background/Theory

K Tsai(INL)

« Self-Powered Neutron Detectors (SPND) provides real-time, localized,
neutron flux.

« Considered the workhorse for in-core flux sensor for nuclear industry.
« Vanadium emitter SPND.

 Neutrons interact with the emitter generating electrical current
proportional to the neutron flux.
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Schematic overview of an SPND
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SPNDs : Installation

K Tsai(INL)

« Four SPNDs are placed in the thru-tube of capsules 2 through 5

« Electrical current signals from both lead wires of each SPND are
measured by an electrometer and recorded by a DAS

SPND 2 & 3

7 I
SPND 1 et SPND 4 Multiplexing electrometer

Cross-sectional view of capsule 2, 3, 5 Diagram of SPND readout
and SPND insertion location
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SPNDs: Performance Update

K Tsai(INL)

SPND3 signal charging Reactor Power vs. SPND1-3 i)
. . PND3 si i s SPND2
g‘ ;2 SPND1 noise Splke S 3 SIgnaI Chargmg SPND3 A.00E-07 =
%— 15 E
2 10 2.00E-07 5
2 5 L ] oo e S
5 0 AFAEY S 0.00E+00 =
8 2/918 3/31/18 5/20/18 7/9/18 \ 8/28/18 <
= Time ) . .
SPND3 sensitivity drop
Reactor Power vs. SPND4 Power
s SPND4
25 150E-06 _
= 70 <
%_ 15 ‘ - : 1.00E-06 E
z 10 ® 500E-07 3
£ 5 o =)
§ 0 . § | et 0.00F+00 =
8 2/918 3/31/18 1 5/20/18 7/9/18 8/28/18 <
= SPND4online  Time SPND4 noise

« SPNDs 1 and 2 are tracking reactor power well with few noise spikes

— Noise suspected from current transfer between sheath and environmental surroundings
« SPND 3 displaying a noisy, charging characteristic and a drop in sensitivity

— Signal degradation under investigation
« SPND 4 signal inconsistent, displaying oscillatory noise

— Oscillatory noise potentially due to circuit short between emitter lead wire and sheath
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Conclusion

Material test reactor instrumentation development and deployment
strategy leverages long-duration irradiation experiments

* |Instrumentation performance validated through multiple reactor cycles

« Lessons learned from aggressive simultaneous instrumentation
deployments in AGR 5/6/7 and ATF-2

Development of a dedicated ATR instrumented
irradiation vehicle will allow for ongoing
instrumentation qualification tests

Troy.Unruh@inl.qgov

energy.gov/ne






