

Opportunities with NSUF for Nuclear Energy R&D

Advanced Sensors and Instrumentation

Annual Webinar

October 31 – November 1, 2018

Brenden Heidrich

Nuclear Science User Facilities

Nuclear Science User Facilities (NSUF)

- Established 2007 as US DOE Office of Nuclear Energy first & only user facility.
- Founded at Idaho National Laboratory initially intended as a single institution user facility. INL remains lead and primary institution.
- NSUF operates as typical US user facility (no cost to user, competitive proposal processes, no funding to users) but also some unique aspects.

Unique aspects of NSUF

- Consortium of facilities/capabilities, not single institution (currently 11 Universities + 4 Universities in CAES, 7 National Laboratories, 1 industry)
- NSUF offers multiple capabilities to a single scientific area:
 - irradiation effects in nuclear fuels and materials.
- Projects can last many years or be short duration.
 - Largest projects include design, fabrication, transport, irradiation, PIE, and final disposition.
- No base funding to facilities.
 - Funding to facility is for project cost and is fully forward funded.
 - Excess capacity is generally utilized.

NSUF Experiment Pathways

NSUF Capabilities Offer Research Opportunities

Neutron Irradiations lon Irradiations Gamma Irradiations

Hot Cells & Shielded Cells

Low Activity Laboratories

Beamlines

High Performance Computing

BROOKHAVEN

NATIONAL LABORATORY

11 Universities CAES (4 Unis)

7 National Labs

1 Industry

Visit nsuf.inl.gov for details at individual facilities

Simple Static Capsule Experiments

- Passive instrumentation (flux wires, melt wires)
- Enclosed in sealed tube, or fuel plates
- Temperature target controlled by varying gas mixture in conduction gap and with material selection
- Lengths up to 48";
 diameter 0.5" 5.0"
- Used for isotope production, fuel and material testing

Instrumented Lead Experiments

- On-line experiment measurements
- Temperature control range 250-1200°C, within +/- 5°C
- Monitoring of temperature control exhaust gases for experiment performance (e.g., fission products, leaking materials, etc.)
- Specialized gas environments (oxidizing, inert, etc.)

NSUF – Ion Beam Irradiation Facilities

University of Michigan Ion Beam Laboratory

University of Wisconsin
Tandem Accelerator Ion Beam

Additional Partner Facilities:

- IVEM at the Argonne National Laboratory
- CMUXE at the Purdue University (surface science)
- Ion Beam Laboratory at the Texas A&M University
- I³TEM Facility at the Sandia National Laboratory

Gamma Irradiations

Idaho National Laboratory

- ATR Gamma Facility is an aluminum dry tube projecting from the spent fuel rack to the top of the ATR canal.
 - Used fuel irradiation
 - 25kGy/hr
- Gamma Irradiator Test Loop, located in the Fuels and Applied Science Building.
 - 60Co Nordion Gammacell 220
 - 3kGy/hr

Oak Ridge National Laboratory

- Gamma Irradiation Facility located in the HFIR pool.
 - Used fuel irradiation
 - 1MGy/hr

Sandia National Laboratories

- Gamma Irradiation Facility
 - Pool and hot cell irradiators
 - 60Co sources (repositionable)
 - 36kGy/hr

Database of nuclear energy R&D resources (NEID)

Nuclear Fuels and Materials Library

The NSUF Nuclear Fuels and Materials Library

- Owned by DOE-NE and curated by the NSUF
- Includes nuclear fuel and material samples from past and ongoing irradiation test campaigns, decommissioned power reactors, and donations from other sources.
- contains >6000 searchable samples and corresponding information
 - **Irradiation Conditions**
 - **Experiment information**
 - Project reports
- Mostly neutron irradiated specimens:

EBR-II (Idaho National Laboratory)

ATR (Idaho National Laboratory)

HFIR (Oak Ridge National Laboratory)

FFTF (Hanford Site)

José Cabrera Nuclear Power Station

Nuclear Power Plant harvested materials (in negotiation)

Accessing the NSUF

1. Consolidated Innovative Nuclear Research FOA

- Kickoff in August, awarded the following June
- R&D support funding can be requested
- Irradiation + PIE (\$500K -\$4.0M, up to 7 years)
- PIE only (\$50K to \$750K, up to 3 years)
- Irradiation only (\$500K -\$1.5M)

2. Rapid Turnaround Experiment calls

- For small examination or beam-line projects
- Three calls per year
- No R&D support funding
- XPD at NSLS-II, IVEM and MRCAT at APS are available

3. DOE-NE Infrastructure Programs

- Reactor Upgrades
- General Scientific Infrastructure

NSUF Workscopes

University Led

- NEAMS-2:SEPARATE EFFECTS IRRADIATION TESTING FOR VALIDATION OF MICROSTRUCTURAL MODELS IN MARMOT
- FC-2.5: SEPARATE EFFECTS TESTING IN TREAT USING STANDARD TEST CAPSULES

University, National Laboratory, Industry Led

- NSUF 1.1: Testing of Advanced Materials or Advanced Sensors for Nuclear Applications
- NSUF 1.2: IRRADIATION TESTING OF MATERIALS PRODUCED BY INNOVATIVE MANUFACTURING TECHNIQUES

Industry Led

- NSUF-2.1: CORE AND STRUCTURAL MATERIALS
- NSUF-2.2: Nuclear Fuel Behavior and Advanced Nuclear Fuel Development
- NSUF-2.3: ADVANCED IN-REACTOR INSTRUMENTATION

ND-14730: Yanliang Zhang

High-performance nanostructured thermoelectric materials and generators for in-pile power harvesting

- NSUF-1.1 (Sensors)
- MITR and MIBL
 - In-Core Sample Assembly (ICSA)
 - 2 cycles (~6 months in reactor)
 - 0.3-0.5×10²¹ n/cm2, E>1.0 MeV

OSU-14749: Marat Khafizov

Irradiation Behavior of Piezoelectric Materials for Nuclear Reactor Sensors

- NSUF-1.1 (Sensors)
- Determine piezoelectric, elastic and dielectric properties of AIN material under nuclear reactor environmental conditions.
- OSURR and Wisconsin IBL
 - instrumented-lead experiment
 - Starting 2019
 - 300 hours
 - 8.1x10¹⁷nvt fast fluence
 - surface acoustic wave radiofrequency filter
 - RT, 350°C & 650°C
 - will use the 7" high-temp furnace irradiation facility

DOE-NE Requests for Information

- Capabilities RFI (DE-SOL-0008318)
 - seeking information regarding capabilities needed by researchers to accomplish nuclear energy R&D
- CINR Workscope RFI (DE-SOL-0008246)
 - seeking ideas in the areas of research, information, comments, feedback, and recommendations from interested parties for future work scopes for the major NE-funded research programs.
- NFML RFI (DE-SOL-0010995)
 - seeking information regarding:
 - existing nuclear energy research materials and specimens that can, potentially, be added to the NFML, and
 - future needs for nuclear energy-related material to support ongoing nuclear energy challenges as well as future research advancements in nuclear energy.

