

Nuclear Technology Research & Development

# Advanced Fuels Campaign: Instrumentation Needs

Steven L. Hayes

National Technical Director

Advanced Sensors and Instrumentation NE I&C Review Webinar October 31, 2018



# **Advanced Fuels Campaign: Structure and Mission**

# **Nuclear Energy**

#### Mission:

- 1) Support development of near-term Accident Tolerant Fuel (LWR) technologies
- Perform research and development on longer-term Advanced Reactor Fuel technologies



#### **Accident Tolerant Fuels**

LWR fuels with improved performance and enhanced accident tolerance

#### **Advanced Reactor Fuels**

Advanced reactor fuels for enhanced resource utilization

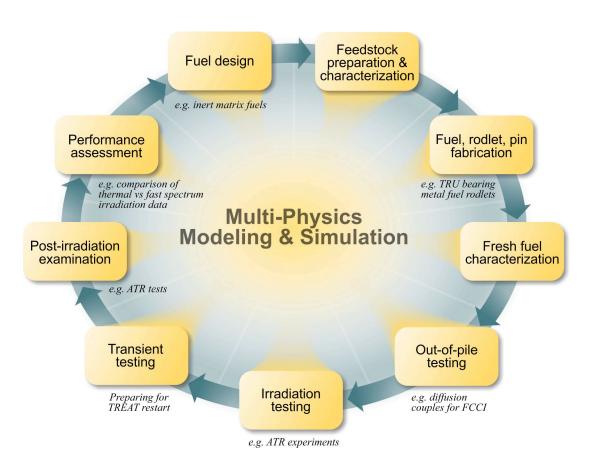
#### **Capability Development to Support Fuel Development and Qualification**

Advanced characterization and PIE techniques

Advanced in-pile instrumentation

Separate effects testing for model development/validation Transient testing infrastructure




#### **Fuels Product Line**

Multi-scale, multi-physics, fuel performance modeling and simulation





# Fuel Development R&D Life Cycle





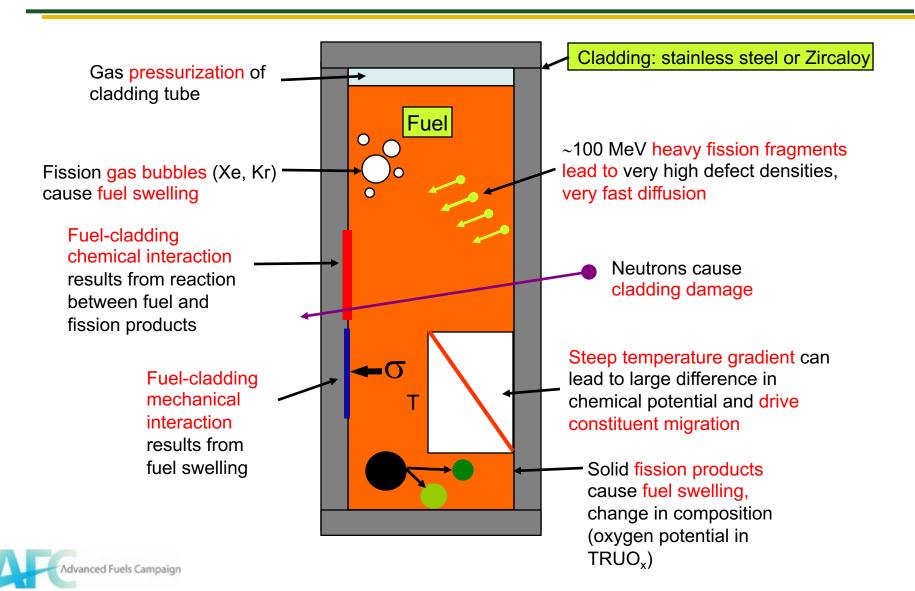


# **In-Reactor Test Objectives**

# Nuclear Energy

# <u>Irradiation Experiment Goals:</u>

- Investigate new fuel behavior, or demonstrate mature fuel behavior
- Measure fuel behavior, integral fuel performance: macroscopic scale
- Quantify microstructure-scale data for modeling and simulation: microscopic scale
- Compare performance of new fuels to historic fuels database
- Identify life-limiting phenomena


# **In-reactor Instrumentation Goals:**

- Measure in-reactor conditions (e.g., power, flux, temperature)
- Observe "real-time" fuel behavior
- Provide rapid access to results before postirradiation examination (PIE)
- Inform decisions on continued irradiation or discharge based on performance or conditions
- Provide intermediate fuel behavior data





# **Fuel Behavior is Complex**





# In-Situ Instrumentation Considerations

# Nuclear Energy

# **Experiment Types**

# Static Capsules

- simplest design
- most cost-effective
- accommodate wireless instruments

#### ■ Instrumented Lead

- extensive design, handling, cost
- accommodate wired instruments

# Loop Experiments

- coolant environment controlled independent of ATR coolant
- accommodate wireless or wired instruments

# **Instrument Types**

#### Wired

- only possible in instrumented leads and loops
- create handling issues

#### Wireless

applicable to any experiment type

# **Measurement Types**

# ■ State Point (PIE)

- end of irradiation
- supplemental data, but limited

# ■ Real Time (in situ)

- provides much more data
- detailed history for long experiments





# **In-reactor Instrumentation Constraints**

# Nuclear Energy

# Small diameter experiments

 Irradiation experiments are usually representative of prototypic reactor fuel pin dimensions ~5.8-9.5 mm (0.230-0.374 in.) OD

# ■ Small in-reactor experiment locations

Typical ATR experiment positions 15-38 mm (0.62-1.5 in.) ID

# Stability and Survivability

- Instruments must survive irradiation and fuel environment with no (or known) drift
- Instruments must survive reactor conditions:
  - high neutron flux
  - high temperature/high pressure
  - chemical environments
- Wired instruments must fit through reactor pressure vessel feedthroughs (leak tight)

# ■ Limited space (feedthroughs) for wired instrumentation

ATR loops are limited to 24 leads (5-6 instrumented rods per test train)

# Total cost (fixed program budgets)

 Experiments with instrumented leads are much more expensive to design, build, and operate



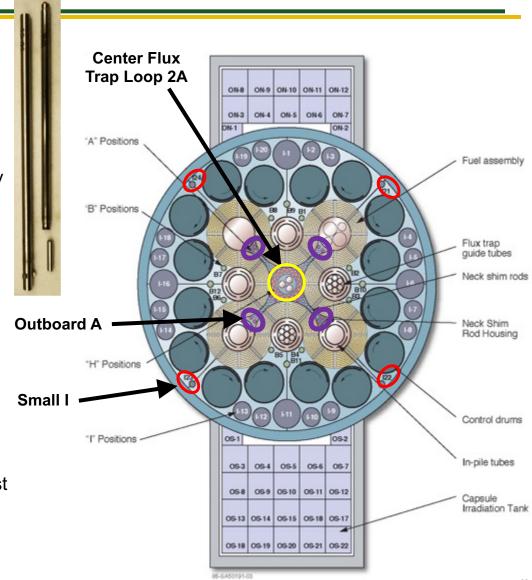


Advanced

Cladding

Advanced

# **AFC Irradiation Experiments in ATR**


# Nuclear Energy

#### Drop-In Capsules

- Outboard A Positions
- Metallic fuel experiments
- Cd-shrouded baskets filter thermal flux
- Rodlet inside SS capsule (safety barrier)
- Gas gap provides prototypic cladding temperature
- Small I positions
- ATF-1 feasibility testing
- Rodlets in individual capsules (axial stack of 5)

#### Instrumented Lead

- Center Flux Trap Loop 2A
- ATF-2 demonstration testing
- Prototypic PWR conditions
- Test train w/instrumented leads
- A priori Sensor Qualification Test (SQT)







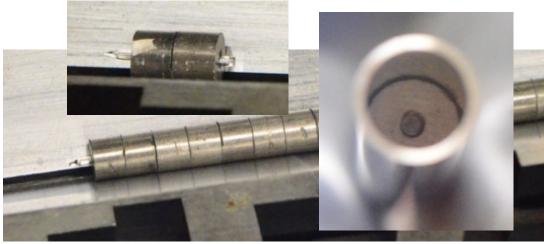
# **Current Irradiation Test Instrumentation**

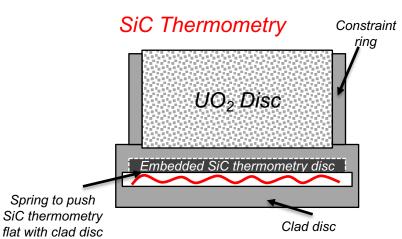
# **Nuclear Energy**

# ■ Melt Wires

- ATF-1
- inserted inside DU insulator pellets

#### **■ Flux Monitors**


ATF-1 baskets


# ■ SiC Temperature Monitors

ATF-1 and ATF-2 experiments

#### In-basket Flux Wires











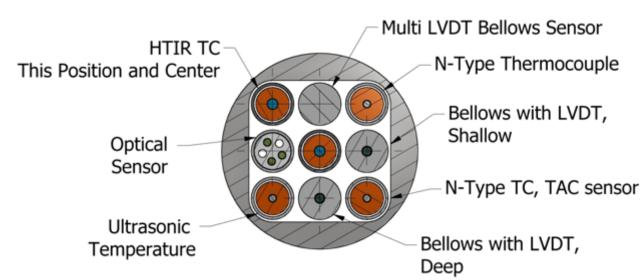
# **ATF-2 Loop Instrumentation**

# **Nuclear Energy**

| SQ Test Lead Arrangement |          |       |       |       |  |
|--------------------------|----------|-------|-------|-------|--|
| Top Tier                 |          |       |       |       |  |
| Lead Sheath Diameter     |          |       |       |       |  |
| (inches)                 | 0.039    | 0.063 | 0.125 |       |  |
| Multiple LVDT Single     | 6 (2 Per |       |       |       |  |
| Bellows                  | LVDT)    | 1     |       |       |  |
|                          | 2 (2 Per |       |       |       |  |
| LVDT Single Bellows      | LVDT)    | 1     |       |       |  |
|                          | 2 (2 Per |       |       |       |  |
| LVDT Single Bellows      | LVDT)    | 1     |       |       |  |
| Optical Pressure         |          | 5     |       |       |  |
| HTIR TC                  |          | 2     |       |       |  |
| Type N TC                |          | 1     |       |       |  |
| Type N TC with TAC       |          | 1     |       |       |  |
| Ultrasonic Multipoint    |          |       |       |       |  |
| Temp                     |          | 1     |       |       |  |
| MPFD Neutron Detector    |          |       | 1     |       |  |
|                          |          |       |       |       |  |
| Lead Size                | 0.039    | 0.063 | 0.125 | Total |  |
| Total Leads              | 10       | 13    | 1     | 24    |  |

# **Fuel Test (Planned)**

| Parameter                                          | Sensor           | Source |
|----------------------------------------------------|------------------|--------|
| Fuel<br>Temperature                                | HTIR-TC          | INL    |
| Gas Pressure                                       | LVDT/<br>Bellows | Halden |
| Fuel Elongation                                    | LVDT             | Halden |
| Cladding<br>Elongation                             | LVDT             | Halden |
| Coolant Water<br>Electro-<br>chemical<br>Potential | ECP              | Halden |
| Neutron Flux                                       | Flux<br>Wire     | INL    |
| Coolant Water<br>Temp – Core<br>Region             | TC               | INL    |






# **SQT** Instrumentation (Top Tier)

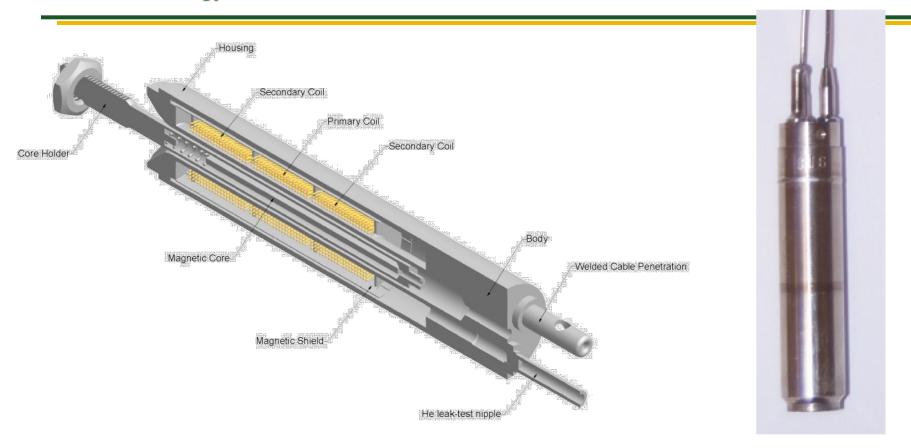
- Sensors to be evaluated have potential advantages, but have not been demonstrated previously in a high flux environment
  - Developmental sensors may be used in ATF-2 fueled experiment if performance is exceptional







# Flowing Autoclave Test – Mock-up of SQT Prior to ATR Insertion


- Westinghouse Electric Research Laboratory – Churchill, PA
- Collaboration with IFE / Halden
- Assemble mock-up test train at INL and ship to Westinghouse
- ATR / PWR prototypic operating conditions
- Evaluate durability of sensors under high flow/water, temperature conditions
- Assess chemical interactions
  - Crud buildup
  - Cladding corrosion
  - Formation of dissolved solids
  - Plating on cladding surfaces

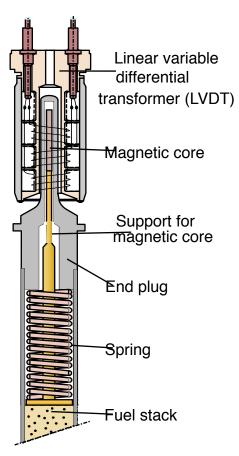




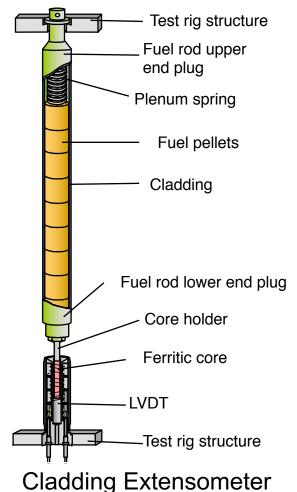


# **Halden LVDT-based Instruments**






- Used in test reactors worldwide
- Not previously demonstrated in ATR minor modifications are being implemented for fuel and cladding elongation measurements






# Fuel Extensometer: Pellet Stack Growth Cladding Extensometer: Pin Growth



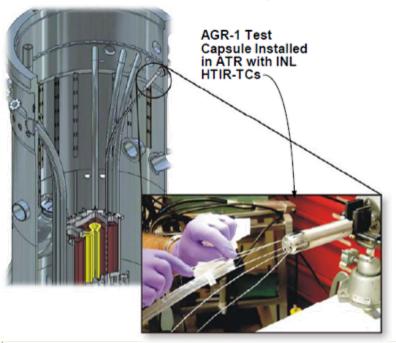
Fuel Extensometer

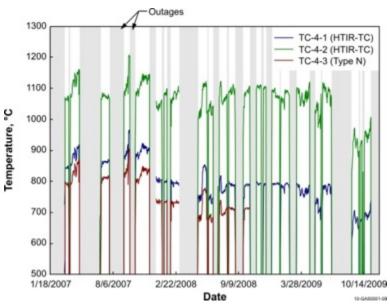


# Potential issues to be evaluated:

- Irradiation/temperature response of LVDT
- Water ingress and vibration damage in MIMS cables
- Sensitivity of LVDT/core combinations

# Modifications of Halden design for ATR application:


- Fuel Extensometer:
  - Type-10 LVDT fits around fuel rod
  - Core placed on end of fuel stack/no pushrod






# High-Temperature Irradiation Resistant Thermocouple: Fuel Centerline Temperature

Initial evaluations suggested doped Mo/Nb-1%Zr thermoelements with HfO<sub>2</sub> insulation and Nb1%Zr sheaths most suitable combination for HTIR-TCs.





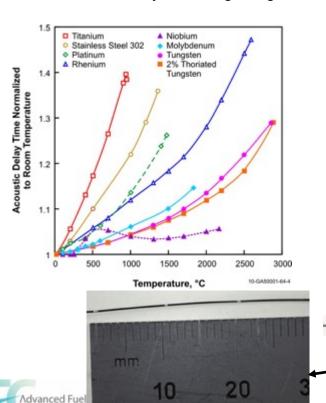
HTIR-TCs performed well throughout AGR-1 irradiations (while commercial TCs failed)

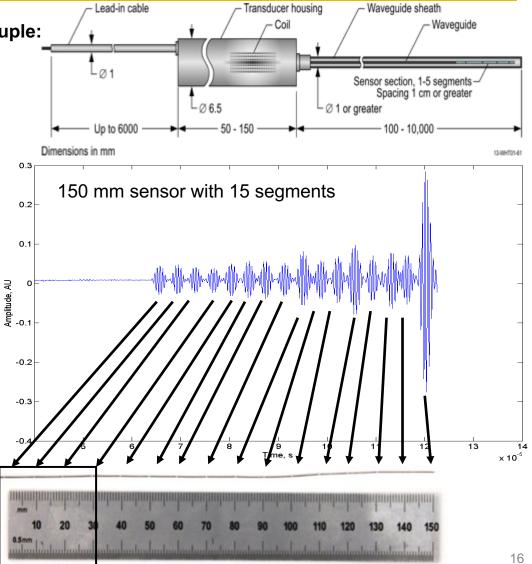
HTIR-TCs patented by BEA and deployed

# Near term development to address existing limitations:

- Lack of Nb-1%Zr availability
- Activation of hafnia and availability of newer insulation materials
- Current effort to improve HTIR-TC with newer materials (Doped Nb, Yttria)

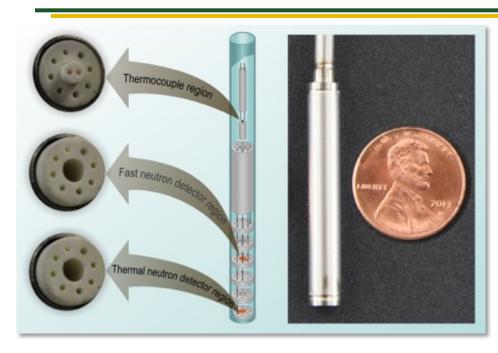




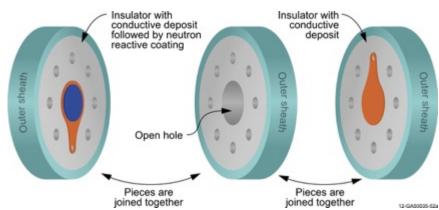


# **Ultrasonic Thermometer: Fuel Centerline Temperature**

# **Nuclear Energy**

Potential improvements over thermocouple:


- Very high temperature capability
- Multi-point measurement
- Sensor material selectable for environment and temperature range
- SQT UT may have single segment



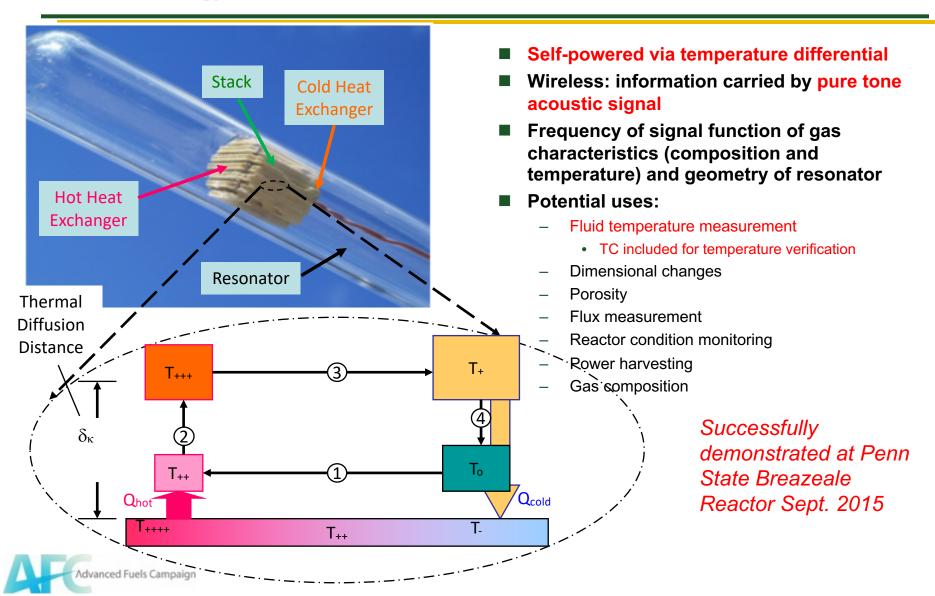





# Micro Pocket Fission Detector (MPFD): Environmental Temperature and Neutron Flux



- Three sensors in a single, compact package:
  - Thermal neutron detector
  - Fast neutron detector
  - Temperature detector
  - Modular design may allow more chambers



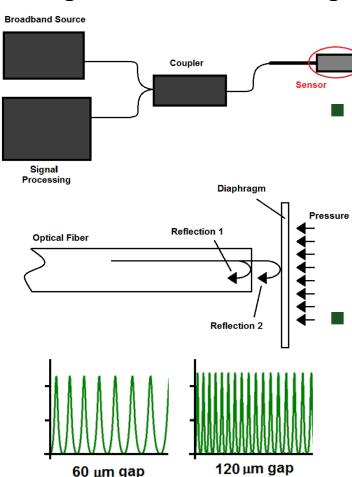

- MPFDs use parallel plate fission chamber design
  - Neutron signal not based on full energy deposited
  - Small size
  - Fast response
  - Inherent background radiation discrimination
- Prototype evaluated in HTTL furnaces and KSU TRIGA reactor
  - Tested to 500°C for 1000 hours
  - Tested in a TRIGA at 10<sup>13</sup> n/cm<sup>2</sup>-s
- Current effort to design for temperatures to 800°C





# Thermoacoustic (TAC) Sensor: Fluid Temperature






# Luna Innovations Fiber Optic Sensor: Pin Gas Pressure

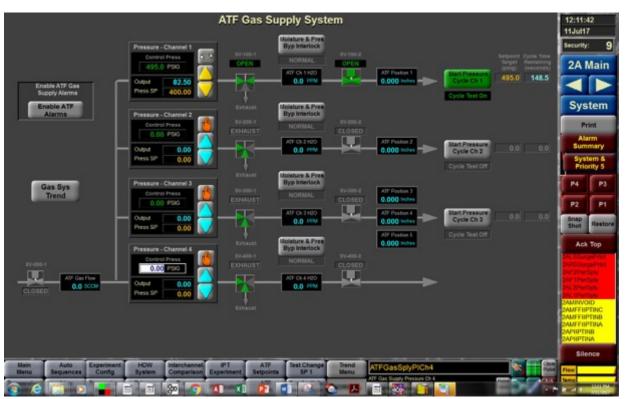
# **Nuclear Energy**

- Fiber optic pressure sensor significantly smaller than LVDT based system
- Fiber optics known to degrade outside core region for ATR application



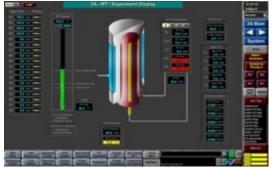


Extrinsic Fabry-Perot Interferometry


- 1/16 inch diameter
- 1.5 inch length
- Demonstrated to 16000 psi
- Response time down to 13 µs
- Other sensors possible based on method:
  - Temperature
  - Dimensional changes






# **SQT Distributed Control System (DCS)**

# **Nuclear Energy**

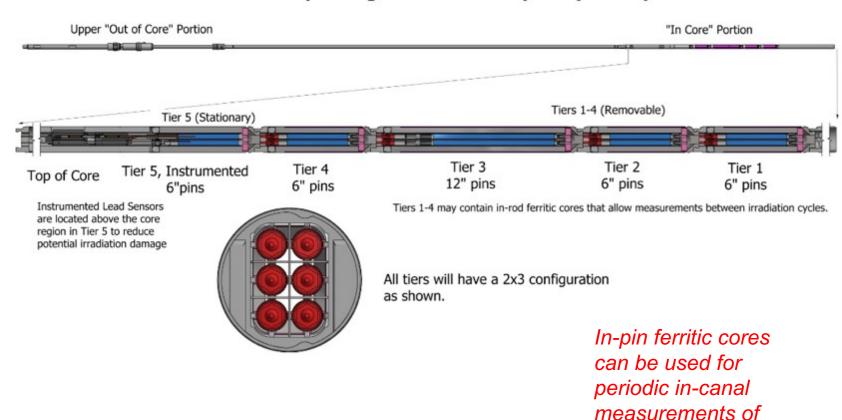


The DCS provides data acquisition and control capabilities associated with the ATF-2 SQT gas panel and experiment as well as the 2A experiment loop.












# **ATF-2 Test Train Design**

# **Nuclear Energy**

#### ATF Water Loop Configuration for Safety Analysis Purposes





clad and fuel

elongation Tiers 1-4



# **ATR Loop Condition Sensors/Controls**

# Nuclear Energy

#### Thermo-couples (TCs) to measure inlet and outlet temperatures

can adjust water temperature "on the fly" during irradiation testing as needed

#### Flow meters to measure loop flow rates

can adjust water flow rate "on the fly" during irradiation testing as needed

#### In-line Chemical sensors

H2, Conductivity, pH

#### Water "grab sample" collected daily

Boron measurement daily; dissolved metal constituents measured weekly

#### ■ Electro-chemical Potential (ECP)

- Measures concentrations of dissolved oxidants in loop coolant water
- Will be used to monitor formation/dissolution of clad corrosion
- Halden reactor has developed a reference electrode that is capable of withstanding in-core conditions – has been successfully used in Halden Reactor

#### ■ Core region Thermo-Couple

- Measures coolant water temperature in the core region (included in the ATF-2 test train)
- ATR measures loop inlet and outlet water temperatures only

#### Test Train Flux wire

- Measure neutron flux in the test train region
- Used to refine neutronics calculations to support burnup evaluations
  - center flux trap flux is not controlled directly (4 corner lobes) and fluctuates during the cycle duration





# **Summary**

- Advanced Fuels Campaign is currently using flux wires and melt wires in ATF-1 experiments, expect to use LVDTs and thermocouples in loop experiments.
- Wireless thermoacoustic (TAC) sensor demonstrated in Breazeale Reactor at Penn State (09/2015)
- Sensor qualification test evaluated existing and new instruments in ATR conditions
  - Out-of-pile SQT mock-up test in flowing autoclave tested prior to ATR insertion
  - TC drift and water ingress at pin penetration were observed
- ATF-2 loop experiment will (eventually) use demonstrated inreactor instruments to measure:
  - fuel temperature
  - fuel pin internal gas pressure
  - fuel stack elongation
  - fuel pin elongation





# **Contacts for Detailed Information**

# **Nuclear Energy**

## ■ ATF-1 Melt Wires

- Jason Harp
- Kurt Davis

# ■ SQT and ATF-2 Loop Experiment and Design

- Brian Durtschi
- Nate Oldham
- Doug Crawford

# ■ SQT, Autoclave, and ATF-2 Loop Instrumentation

- Troy Unruh
- Josh Daw
- Jim Smith
- Kurt Davis
- Steinar Solstad IFE/Halden (steinar.solstad@ife.no)

