

# Gas Hydrates

# **International R&D Activities**

# Timothy S. Collett U.S. Geological Survey

Methane Hydrate Advisory Committee Meeting October 18, 2018





# **Briefing Outline**

- 1. Gas hydrate scientific and industry drilling
- 2. Gas hydrate resource to reserves?
- 3. International gas hydrate projects
  - Japan
  - China
  - India
  - Korea
  - Other
- 4. Additional international gas hydrate projects
- 5. Gas hydrate production testing and modeling
- 6. Integration of gas hydrate reservoir data
- 7. Summary

# Gas Hydrate Scientific and Industry Drilling



# **Gas Hydrate Scientific and Industry Drilling**



# Gas Hydrate Resource Assessments Resources vs. Reserves



In this presentation the term **Resource** refers to the total amount of gas that exists, which is assumed to be the same as the **In Place** volume. This includes gas that is both discovered and undiscovered, economically recoverable or not economically recoverable.

Conversely, **Reserves** in this case are gas deposits that are known to exist with a reasonable level of certainty. These reserves are also recoverable economically with the technologies that already exist.





**H** 

**GH Resources** Where, How, Why

# GH Reserves Motivations

Production Technology

GH Resources Where, How, Why

# Gas Hydrates from Resources to Reserves

#### **Economics**

Limited economic forecasting has shown commercialization of GH is possible at about twice the cost of conventional gas production under similar conditions (as bench marked at \$3.00 US/MBtu)

US: Henry H. price \$2.00-4.00 US/MBtu; Residential price \$9.00-18.00 US/MBtu Net import 2017 3.0 tcf (11% of consumption)

Japan: LNG landed price \$7.60 US/MBtu; Residential gas price \$43.05 US/MBtu Last 10 year, increase in consumption from 3.0 to 4.7 tcf of gas per year

India: LNG landed price \$7.45 US/MBtu Last 10 year, increase in consumption from 2.5 to 4.5 tcf of gas per year 80% of India's energy is imported



|         | GH<br>Reserves                  | Gas Hydrates from Resources to Reserves                                   |                                                                                                      |                                                                                          |       |       |                    |        |  |
|---------|---------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------|-------|--------------------|--------|--|
| ci ves  |                                 | Economics<br>In most cases, unknow<br>production technology               | n resource                                                                                           | volu                                                                                     | me an | d unp | roven              |        |  |
|         | Motivations                     | Field Tests<br>– Onshore 60 mscf/d<br>Offshore $0.7 - 1.2 \text{ mscf/d}$ |                                                                                                      | Max. Single-well Production Rate (MM ft <sup>3</sup> /d)<br>5 10 15 20 25 30 35 40 45 50 |       |       |                    |        |  |
|         |                                 | Simulation - Onshore                                                      | (Dallimore et al., 2012)<br>Mallik '08<br>(Dallimore et al., 2012)                                   |                                                                                          |       |       | Field Tests (3-19) | days)  |  |
| sources | Production<br>Technology        | <ul> <li>Onshore: 4 mmscf/d</li> <li>Circulation Offichance</li> </ul>    | Ignik Sikumi 12<br>(Schoderbek et al., 2012)<br>Nankai Trough '13<br>(METI, 2013)                    |                                                                                          |       |       |                    |        |  |
|         |                                 | – Offshore: 40 mmscf/d                                                    | PBU L-pad<br>(Anderson, 2013)                                                                        |                                                                                          |       |       | Numerical Simula   | itions |  |
|         | Mallik<br>(Uddin et al. , 2013) |                                                                           |                                                                                                      |                                                                                          |       |       |                    |        |  |
| פֿ      | GH Resources<br>Where, How, Why | Nan<br>(Masuda et<br>WR                                                   | kai Trough (pre-test)<br>al., Kurihara et al., 2010)<br>313: Gulf of Mexico<br>(Moridis et al. 2010) |                                                                                          |       |       | hor zontal wells   |        |  |
|         |                                 | Modified from Boswell                                                     | 313: Gulf of Mexico<br>(Gaddapati et al., 2011)                                                      |                                                                                          |       |       |                    |        |  |

|          |                                 | Gas Hydrates from Resources to Reserves         Economics         Occurrence in deep water and Arctic environments – high cost, large operators, return on investment challenging (competition) |                                         |                            |  |  |  |  |
|----------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------|--|--|--|--|
|          | GH<br>Reserves                  |                                                                                                                                                                                                 |                                         |                            |  |  |  |  |
| Seve     |                                 |                                                                                                                                                                                                 |                                         |                            |  |  |  |  |
| GH Rese  | Motivations                     | Resource                                                                                                                                                                                        | Production<br>Rate<br>mscf/day (x1,000) | Well Cost<br>USD (x1,000)  |  |  |  |  |
| L        |                                 | Coalbed Methane                                                                                                                                                                                 | 500                                     | 1,000                      |  |  |  |  |
|          |                                 | Shale Gas Barnett<br>Shale Gas Woodford                                                                                                                                                         | 500-2,000<br>500-3,500                  | 3,000-4,000<br>4,000-7,000 |  |  |  |  |
| sources  | Production<br>Technology        | Conventional Alaska NS                                                                                                                                                                          | 7,500                                   | 5,000-15,000               |  |  |  |  |
|          |                                 | Conventional Deepwater<br>-GOM 1,500-5,000 ft<br>-GOM 5,000-7,500 ft                                                                                                                            | 90,000<br>100,000                       | >50,000<br>>100,000        |  |  |  |  |
| Re       |                                 | Gas Hydrate Modeling                                                                                                                                                                            |                                         |                            |  |  |  |  |
| <b>B</b> |                                 | -Alaska NS 5-6 °C<br>-Alaska NS 10-12 °C                                                                                                                                                        | 700<br>5,000                            | 5,000-8,000<br>5,000-8,000 |  |  |  |  |
|          | GH Resources<br>Where, How, Why | Gas Hydrate Modeling<br>-Offshore                                                                                                                                                               | 5,000-15,000                            | >20,000                    |  |  |  |  |
|          |                                 | Need to reduce development cost or increase productio                                                                                                                                           |                                         |                            |  |  |  |  |



# GH Reserves **Motivations** Resources **Production** Technology **H GH Resources** Where, How, Why

### **Gas Hydrates from Resources to Reserves**

#### **Summary of Challenges**

- In support of gas hydrate production modeling and testing efforts, continue to develop pressure coring equipment and pressure core analysis capabilities.
- "Scientific" production/mechanical testing designed to maximize scientific insight.
- Testing needs to include advance monitor programs to identify and assess mechanical/environmental response/impacts.
- Further development and calibration of gas hydrate production and mechanical models with results from field testing and pressure cores.
- "Demonstration" production/mechanical tests designed to maximize rates and establish deliverability.

Without special "motivations" will need to reduce development and production cost and/or increase production rates based on current production-mechanical modeling results.



Japan



- Summary of R&D: Alaska and Nankai: 1995-2018
- 1998: First Mallik Well
- 1999: Nankai Discovery Well
- 2002: Mallik Thermal Production Test
- 2004: Nankai Exploration Program
- 2007: Mallik Depressurization Test #1
- 2008: Mallik Depressurization Test #2
- 2008: Nankai Trough Resource Assessment
- 2008: Exploration Approach Published
- 2012: Collaboration on Ignik Sikumi Program
- 2012: Preparatory drilling for Nankai Test
- 2013: First Nankai Production Test
- 2014-2018: Production Test Evaluation in Alaska
- 2016: Preparatory drilling for second Nankai Test
- 2017: Second Nankai Production Test
- 2018: Nankai Test Site Characterization









2013 and 2017 Production Tests in Nankai Trough

#### 2013 Field Experiment

- Demonstration of technical recoverability
- 2 weeks planned: 1 week achieved
- Stable production obtained, but sand production issue

#### 2017 Test

- Goal #1: Solve sand production issue
- Goal #2: Demonstrate increased rates over longer flow periods

Outcome: per METI: "As a result of this test, while one of the two production wells suffered the sand-intrusion problem, ANRE achieved a certain level of success from the second well, in which no problems occurred. However, ANRE could not clearly confirm an increase in the production rates at either of the wells, leaving challenges in establishing gas production technologies unsolved."

- Well #1: Approximately 35,000 m<sup>3</sup> in total in 12 days
- Well #2: Approximately 200,000 m<sup>3</sup> in total in 24 days





Fujii et al., 2015. Konno et al., 2017





Very Active Program

# GMGS-1 (2007), GMGS-2 (2013), GMGS-3 (2015) and GMGS-4 (2016)

- Primary focus is Pearl River mouth basin (Shenhu area)
- GMGS-4 added new area to the south (Xisha area);
   58 days/ 21 sites
- Reservoirs appear to be clay-rich silt with  $\rm S_{gh.}$  up to 40% (anomalous)
- Lateral heterogeneity over short distances.
- 20-90 m thick at BGHS: Some Structure II GH

#### **Onshore Testing Underway**

- Permafrost-associated: Thermogenic; Fractured-rock reservoirs
- Tibetan Plateau (Qilian) and Manchuria (Mohe)





Yang et al., FITI, 2017







#### Bluewhale 1 & 2

CPOE Operator CNPC Client First deployment – SCS GH testing

Test site in South China Sea Test zone ~250 mbsf WD = 1,266 m

Ministry of Land and Resources 60 days  $\rightarrow$  309,000 m<sup>3</sup>

The highest output in one day is 35,000 m<sup>3</sup> (1.2 mmcf/day), and the average output a day is about 16,000 m<sup>3</sup>/day (0.6 mmcf/day)

China Geological Survey 80 billion metric tons of reserves

New gas hydrate center CNOOC-Beijing

GMGS-5 (2018) geoscience expedition

GMGS-6 (2019) geoscience expedition?

2020 second production test ?





# GMGS-3 (2015) W17



India



#### DOE-MoPNG MoU; USGS-DGH MoU

#### **India-US Collaboration**

۲

- Planning, execution of NGHP-01 and NGHP-02
- Evaluation and publication of Scientific Results from NGHP-01 (USGS, NETL, LBNL, GT, Scripps, OSU)
- Geophysical site review for NGHP-02 exploratory drilling
- Evaluation of NGHP-02 pressure cores (USGS, AIST)
- Geomechanical production simulations for potential NGHP-03 sites (NETL, LBNL, USGS)
- Evaluation and publication of Scientific Results from NGHP-02 (USGS, NETL, LBNL)
- Operational planning for NGHP-03



#### Research paper

Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01

Timothy S. Collett <sup>a, \*</sup>, Ray Boswell <sup>b</sup>, James R. Cochran <sup>c</sup>, Pushpendra Kumar <sup>d</sup>, Malcolm Lall <sup>e</sup>, Aninda Mazumdar <sup>f</sup>, Mangipudi Venkata Ramana <sup>g</sup>, Tammisetti Ramprasad <sup>f</sup>, Michael Riedel <sup>h</sup>, Kalachand Sain <sup>i</sup>, Arun Vasant Sathe <sup>j</sup>, Krishna Vishwanath <sup>e</sup>, NGHP Expedition 01 Scientific Party



NGHP-02 p-cores arrive at USGS labs in Woods Hole

NETL modeling for potential NGHP-03 Site 16

Science Results

for NGHP-01



# **Deep Water Shelf-Slope-Basin Deposition**



# India NGHP-01 (2006) and NGHP-02 (2015)





Area C (6 sites) Site NGHP-02-05 Site NGHP-02-06 Site NGHP-02-07 Site NGHP-02-08 Site NGHP-02-09 Site NGHP-02-10

# India NGHP-02: Area C Gas Hydrate System

Analysis LWD data from the Area-C along with the available 3-D seismic data volumes, reveals a <u>fully developed gas hydrate system</u> along the outer continental slope margin of the D6 and D9 Blocks in the Krishna-Godavari Basin.

<u>Prominent channel features</u> drilled in Holes NGHP-02-07-A and -10A, appears to be linked to the down slope deep-sea channel levee system targeted by Holes NGHP-02-08-A and -09-A and the more distal middle to outer fan sequences drilled in Holes NGHP-02-05-A and -06-A.

Hole NGHP-02-08-A appears to have penetrated a 26-m-thick interval of what appears to be a sand-rich levee deposit with high gas hydrate saturations over about 20 m of the drilled reservoir section. Hole NGHP-02-09-A, selected to test the same levee system on the opposite bank of the same channel <u>drilled a 53 m thick reservoir</u> section that appears to be mostly gas-hydrate-bearing.

Holes NGHP-02-05-A and -06-A both encountered a <u>relative thick succession of</u> <u>middle to outer fan deposits</u> with individual well log inferred sand reservoir sections measuring more than 50 m in thickness. Hole NGHP-02-05-A encountered a relatively thick section of thinly bedded gas hydrate-bearing turbidite sands just above the BSR at this site.

# Krishna-Godavari Gas Hydrate System **Channel-Levee and Fan Systems**



# Krishna-Godavari Gas Hydrate System Slope-Rise Channel-Levee System



#### NGHP-02-09





#### Area C Krishna-Godavari Gas Hydrate System Slope-Rise Channel-Levee System



## India NGHP-02: Area-C Site NGHP-02-09



# India NGHP-02: Area-C Site NGHP-02-09



## India NGHP-02: Area-C Sites NGHP-02-08 & -09



#### NGHP-02-09-9P & -10X Core Images

#### Coarse sand sediment layers

804-C8029C-9P; 248.0–248.2 Depth Image, split section image Depth DSF, MSI

Image, X-ray CT scanning

804-C8029B-39P; 257.0–257.635 Depth Image, split secti Image, X-ray CT

257.000-

Depth DSF, MSI





# NGHP-02 Area C Sites 08/09: Channel-Levee System *Pressure Cores – typical GH-bearing reservoir section*



# NGHP-02 Area C Sites 08/09: Channel-Levee System Analog depositional model



# Gas Hydrate System Gas Source



# Area C: Site NGHP-02-09 Reservoir Model





Area B (12 sites) Site NGHP-02-14 Site NGHP-02-15 Site NGHP-02-16 Site NGHP-02-17 Site NGHP-02-18 Site NGHP-02-19 Site NGHP-02-20 Site NGHP-02-21 Site NGHP-02-22 Site NGHP-02-23 Site NGHP-02-24 Site NGHP-02-25
The main feature of Area-B is a large regional elongated anticlinal structure (the L1 Block structure) that is aligned perpendicular to the slope.

Two potential reservoir systems were identified in Area-B, including an "upper" reservoir faces (R1) and a second "lower" (R2) reservoir section with both reservoir faces characterized by apparent peak-leading seismic events above the BSR.

The "upper" reservoir faces (R1) is characterized by a relatively <u>complex occurrence</u> of both pore-filling and fracture-filling gas hydrates.

The "lower" reservoir faces has proven to be more perspective for highly saturated and thick gas hydrate occurrences. The LWD data from Holes NGHP-02-16-A and -17-A that were drilled to test the "lower" reservoir faces just above the BSR, have shown the presence of <u>18 and 19 m</u>, respectively, of highly concentrated gas-hydrate <u>occurrences</u>.

The unprecedented opportunity to drill 12 LWD penetrations through in the L1 Block gas hydrate accumulation and to core the gas hydrate system at five sites have provided one of the most complete three-dimensional petrophysical-based view of any known gas hydrate reservoir system in the world.



Source: WOB, Mumbai





### NGHP-02: Area B Gas Hydrate Accumulation Lower (R2) Reflector/Reservoir



### NGHP-02-16





#### Area B Krishna-Godavari Gas Hydrate System *Toe-of-Slope to Outer Basin Floor Fan*

### India NGHP-02: Area-B Site NGHP-02-16



# NGHP-02: Area-B Lower (R2) Reflector/Reservoir



## NGHP-02: Area B Lower (R2) Reflector/Reservoir Log Section - Holes NGHP-02-17A -23A -16A -20A



## NGHP-02: Area B Lower (R2) Reflector/Reservoir Pressure Cores – typical GH-bearing reservoir section





## NGHP-02: Area B Lower (R2) Reflector/Reservoir Pressure Cores – core derived lithology



A) Massive gray sand; B) Thin silt layers interlayered with silty clay; C) Gray clay



# Gas Hydrate Petroleum System Gas Source



### Area B: Site NGHP-02-16 Reservoir Model



Gas Hydrate Units: Reservoir total porosity (40%); Gas Hydrate Saturation (80%); Effective permeability (two assumed cases 10 mD and 0.1 mD)

## **NGHP-02 Most Significant Accomplishments**

- Acquired LWD and core data confirmed the presence reservoir-quality sands in most every site established during NGHP-02, with gas hydrate occurrences closely matching pre-drill predictions.
- NGHP-02 drilling has <u>confirmed the project developed depositional models</u> for the sand-rich depositional faces in the Krishna-Godavari and Mahanadi Basins.
- Established the existence of a fully developed <u>gas hydrate system in Area-C</u> of the Krishna-Godavari Basin, discovery of interconnected depositional system.
- Discovered the thickest known gas-hydrate-bearing sand reservoir system in the world associated with the <u>Area-C Site NGHP-02-08 and -09 channel-levee</u> <u>prospects</u>.
- The acquisition of closely spaced LWD and core holes in <u>the Area-B L1 Block gas</u> <u>hydrate accumulation</u> have provided one of the most complete threedimensional petrophysical-based view of any known gas hydrate reservoir system in the world.
- Area-B and Area-C contain important world class gas hydrate accumulations and represent ideal sites for consideration of <u>future gas hydrate production testing</u>.

# JOURNAL OF MARINE AND PETROLEUM GEOLOGY SPECIAL ISSUE

Title: Marine Gas Hydrate Reservoir Systems Along the Eastern Continental Margin of India: Results of the National Gas Hydrate Program Expedition 02

Guest Editors: M. Pratap, S.K. Singh, K.K. Chopra, P. Kumar, Y. Yamada, N. Tenma, K. Sain, U.S. Sahay, R. Boswell, W. Waite (Managing Guest Editor: T.S. Collett)

#### **Contents**

Preface Operational and Scientific Accomplishments and Summaries NGHP-02 Pre-Expedition Drill-Site Evaluation Lithostratigrahic and Paleoenvironmental Physical Properties Inorganic Geochemistry Organic Geochemistry Microbiology Pressure Core Acquisition and Analysis Well Log Analysis Seismic Characterization Gas Hydrate Production and Mechanical Testing and Modeling

#### Status as of 14-OCT-2018 – Total of 50 Submissions



# JOURNAL OF MARINE AND PETROLEUM GEOLOGY SPECIAL ISSUE

#### JMPG NGHP-02 Expedition Summary Papers

India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: Gas Hydrate Systems along the Eastern Continental Margin of India Timothy S. Collett, Ray Boswell, William F. Waite, Pushpendra Kumar, Mahendra Pratap, Sandip Kumar Roy, Krishan Chopra, Sunil Kumar Singh, Yasuhiro Yamada, Norio Tenma, John Pohlman, Margarita Zyrianova

India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: Evaluation of Natural Gas Hydrate-Bearing Pressure Cores Ray Boswell, Jun Yoneda, William Waite

India National Gas Hydrate Program Expedition 02 Summary of Scientific Results: Numerical Simulations of Gas Hydrate Reservoirs Ray Boswell, Evgeniy Myshakin, George Moridis, Yoshihiro Konno, Timothy S. Collett, Taiwo Ajayi, Yongkoo Seol

India National Gas Hydrate Program Expedition 02 Operational and Technical Summary Pushpendra Kumar, Timothy S. Collett, K. M. Shukla, U. S. Yadav, M. V. Lall , Krishna Vishwanath







# **NGHP Considerations**

- Sustained Project Support and Staffing Requirements
  - Sustained support of governmental, industry and academic research institutions engaged in gas hydrate research.
  - Continued development of domestic R&D capabilities through domestic and international governmental and academic partnerships (Japan, US, Korea, China, EU, etc).
  - Identify key industrial experts (engineering, G&G, etc) to support the NGHP-03 design and operational phases.
  - International Cooperatives and Reporting
    - Continued develop of domestic and international research partnerships and cooperatives; support and contribute to domestic and international conferences and technical meetings.
    - Publish NGHP-02 Scientific Results Volume, Journal of Marine and Petroleum Geology Special Issue.







- Test Site Review and Characterization
  - Inventory and assess candidate test sites with existing NGHP and industry data through an integrated G&G review effort.
  - Assess requirements for additional G&G data acquisition and analysis (geophysical data, logging/coring operations, etc).
- Production Test Design
  - Develop and refine production-mechanical models.
  - Numerical simulation of well performance during planned production tests, develop tests procedures and mitigation approaches.
  - Test design to prioritize insight toward field scale reservoir response and economics.
- Operational Planning
  - Flexibility: Project management plan and structure should anticipate and enable changes in operations.
  - Development of an integrated project risk analysis and management process.







- Test Site Review and Characterization
  - Area B/Site 16 further evaluation needed to confirm nature of reservoir. Optimization of site location for best hydraulic isolation. Can be based on existing data.
  - Area C/Site 9 (other areas including KGDWN98-2) additional data and further evaluation is needed to characterize the reservoir system. New data is needed.
  - Update both reservoir models as new data analysis becomes available.
  - Field data acquisition for additional site characterization and engineer design would require G&G field operations.







- Production Test Design (engineering design)
  - Artificial Lift (ESP, gas lift, multi-phase pump) surface kit, power source, reliability, repair options, redundancy.
  - Sandface completions Screen type and size and gravel selection dependent on reservoir grain size; simple vs. more advance completions.
  - Subsidence induce failures at reservoir level and seafloor.
  - Flow Assurance Evaluate chemical or thermal methods for clearing the wellbore (secondary gas hydrate and ice) in response to shutdowns.
  - Met-Ocean conditions and impact on riser and conductor systems.
  - Project time and associated cost.



- Operational Planning
  - Establish observation (monitoring) holes; drilling considerations, logging operations (LWD and advanced wireline logs), and instrumentation including T&P gages, distributed systems (DTS, DSS, DAS), etc.
  - Pressure coring operations in support of site characterization studies and acquiring reservoir/petrophysical data needed for production/mechanical modeling and test design.
  - Establish, instrument, and complete main production test hole.
  - Deploy seafloor monitoring system.
  - Conduct pre-test and post-test 3D/4D VSP.
  - Conduct pre-test and post-test 3D/4D seismic survey.
  - Conduct 60 or 90 days of flow testing.
  - Conduct production test monitoring (before, during, and after testing operations).
  - Suspend and/or abandon test wells.





#### DOE-MKE MOU: NETL-TAMU-KIGAM CA: NETL-GHDO joint funding for NL FWPs

### UBGH-01 (2007)/UBGH-02 (2010)

•USGS support
•DOE support for US scientist participation
•Special Volume publication in 2014

# NETL, USGS, LBNL support for UBGH-03 planning

Site selection advisory committeeNumerical prediction of production response

### **Numerical Simulation Studies**

•Ongoing Collaborations KIGAM, LBNL, PNL

#### **Collaboration with Texas A&M**

•Project leverages data KIGAMs unique largescale reactors







### Ulleung Basin Gas Hydrate Drilling Expedition (UBGH2) 2010



### **Ulleung Basin Gas Hydrate Prospects**



Wireline and VSP Logging - 2 sites (Leg 2)







### INTERNATIONAL SCHOOL FOR GEOSCIENCE RESOURCES (IS-Geo) KOREA INSTITUTE OF GEOSCIENCE AND MINERAL RESOURCES (KIGAM)

### Uconventional Oil and Gas Resources Regular Training Course

### Module 3. Gas Hydrate (February 5-9, 2018)

Day 1. Gas Hydrate Structures, Stability, and Physical Properties by Drs. Lee, Collett, Waite Day 2. Gas Hydrate Systems and Geophysical Characterization by Drs. Haines, Collett, Ryu Day 3. Gas Hydrate Production Field, Laboratory, and Modeling Studies by Drs. Seol, Waite Day 4. Gas Hydrate System Response to Production by Dr. J-Y Lee
Day 5. Gas Hydrate Geohazard, Climate, and Production Research and Challenges by Dr. Collett, Waite, Ryu
Day 6. Vist *R/V Tamhae II*

Participants from Korea, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Peru, Phillipines, Thailand, Vietnam Instructors Collett, Waite, Haines (USGS); Seol (DOE-NETL); Ryu, Lee (KIGAM)

### A Global Review of Gas Hydrate Resource Potential - 2014 Thomas Reichel and Joseph W. Gallagher, Statoil ASA, Oslo, Norway





### Results:

- Favorable basins 256
- Total of 197 basins evaluated
- Good potential 14 basins
- Resources 5 tril cubic meters



## **Other International**



#### 🕆 New Zealand

- IODP Exp. 372 (Nov-2017 to Jan-2018) "Creeping Deformation"
- NETL supported recent NRL/GNS studies
- NETL supports Stanford U. in NZ PetroMod studies

### C Europe

- CAGE at University Tromso
- CAGE & MARUM (U. Bremen) expeditions to Svalbard
- "Sugar" Project at GEOMAR Black Sea MeBO drilling 2017
- MIGRATE (Mediterranean-Israel, Ireland, etc.)
- Engagement with Statoil

#### Other

- Taiwan Oct-2018 MeBo drilling (seeps and BSRs)
- Engagement with SENER, IMP (Mexico)
- Engagement with Petrobras (Brazil)
- Ireland, Uruguay, Colombia, S. Africa, Turkey, Vietnam
- Recent publications of gas hydrates offshore Columbia and Malaysia





MIGRATE (Minshull et al.)

## Gas Hydrate Production R&D





- Messoyakha (Russia) in the 1970s
  - Hydrate supported gas production (?)
- Industry Drill-Stem Tests in the 1970s
  - NW Eileen St 2; Mallik 1L-38
- 1998, 2002 Mallik (Canada)
  - Thermal and formation pressure testing

#### • 2007 BP-DOE-USGS Alaska

Formation pressure testing

#### 2007 & 2008 Mallik (Canada)

- Depressurization test (6-days)

#### 2011-2102 ConocoPhillips-DOE Alaska

- CH<sub>4</sub>-CO<sub>2</sub> exchange and depressure test (25-days)
- 2013 Nankai Trough Offshore Test (Japan)
  - 1<sup>st</sup> Marine GH production test (6-days)

#### 2017 South China Sea Test (China)

- Marine GH production test (60-days)
- 2017 Nankai Trough Test (Japan)
  - Marine GH production test (two test 10-30 days)

#### • 2018-2020 DOE-JOGMEC Alaska

- Extended depressurization testing
- 2018-2019 KG Basin Offshore Test (India)
  - Extended depressurization test

### **Recent Test Results**





# Gas Hydrate Production R&D Global Occurrence of Hydrate-Bearing Sands



# Int'l Gas Hydrate Code Comparison



#### 2005-2011: Thermodynamics and hydraulics (US, Japan, Canada)

-Wilder et al., 2008 (ICGH-6) Anderson et al., 2011 (J. Mar Pet Geol 28)

### 2017: Integration of geomechanics (US, Japan, Korea, China, Germany, UK)

### 2017: Collaborative Modeling with Japan and for key sites in India

### 2018: New International Code Comparison Study



-White (PNNL) et al., 2018-ongoing

# **Geomechanical Production Modeling**

In Support of NGHP-03 Planning

- NETL and U. Pittsburgh (Lin) Geomechanical Modeling
- Two approaches: TplusH+FLAC3D
  - Coupled approach → maximum settlement of 135 cm; maximum heave of 20 cm
  - De-coupled approach → maximum settlement of 140 cm; maximum heave of 45 cm
- NETL and Rensselaer Polytechnic Institute (Uchida) Sand Production Modeling









# **Production Technology Evaluation**



### Well Completion, Production, Intervention in Support of Alaska Test "Working Group"

- Mud-chiller
- MOBM
- Sidewall pressure coring
- Whole core pressure coring
- Pressure core analyses (onsite and lab-based)
- Full suite LWD and wireline logs
- Monitoring inside and outside casing
- Fiber-optic Temperature Monitoring (DTS)
- Fiber-optic Strain Monitoring (DSS)
- Fiber-optic Acoustic Monitoring (DAS)
- Pressure/Temperature monitoring (gauges)
- Brillouin Scattering System Strain Monitoring
- VSP (DAS)
- Artificial Lift (ESP, Jet-pumps, etc.)
- Sand control completion



Examples of tools under consideration

## **Gas Hydrate Production**

"Conventional" and Enhanced Methods

- **Proven Gas Hydrate Production Technologies** 
  - Temperature: Thermal methods
  - Pressure: Depressurization methods
  - Chemical Injection: Methanol, salt
  - Chemical Injection: C02-CH4 Exchange (sequestration)
- **Untested Gas Hydrate Production Technologies** 
  - Horizontal Completions
  - Hydraulic Fracturing
  - Enhanced Permeabilities: N2, Methanol

#### Hydraulic Fracturing in Methane-Hydrate-Bearing Sand, By Konno et al, 2016



**Observed** failure

Hydrate Plug Dissociation via Nitrogen Purge: Experiments and Modeling, By Panter et al, 2011



### Integration of GH Reservoir Data - Pressure (permeability) and Temperature Controls
### **Alaska North Slope**



2007: BPXA Mount Elbert Gas Hydrate Stratigraphic Test 2011-2012: ConocoPhillips CO<sub>2</sub> Displacement Test

#### Alaska North Slope – Mount Elbert Well Reservoir Properties – Effective Permeabilities



Mount Elbert 1 – Unit D

### Gas Hydrate Reservoir Models Pore-Filling (load-bearing) Growth Habit



#### **Reservoir Properties**

#### Pressure and Temperature Controls





Shared designs and lessons learned over 3+ decades of pressure core development in the US, Japan, Korea, India, and China

Convergent design toward current PCTB

Alignment on common analysis tool designs



**Pressure Coring Tool** *Hybrid-PCS Family of Tools* 

- Ball valve for full capture of all components
- Laboratory analysis under pressurized conditions – PCATS, AIST, USGS, UT





# Gas Hydrate Pressure Coring Pressure Core Analysis: Geotek-PCATS, AIST, USGS/GT, UT



# **JOGMEC Gas Hydrate Pressure Coring**



#### Nankai Trough Gas Hydrate Pressure Core Analysis



| Hydrate Saturation (%) | Permeability (mD) | JMPG 2015 References |
|------------------------|-------------------|----------------------|
| 18                     | 128               | Santamarina          |
| 24                     | 200               | Konno                |
| 38                     | 10                | Yoneda               |
| 70                     | 47                | Konno                |
| 70                     | 19                | Priest               |
| 74                     | 6                 | Santamarina          |
| 79                     | 22                | Yoneda               |

NMR log data 0.01-1.0 mD (Fujii et al., 2015) Pressure core analysis "several tens of mD" (Konno et al., 2015)



#### India NGHP-02: Coring-Logging-Testing Operations

Total of 42 holes were completed in 147 days (plan of 40 holes in 150 days). -Water depths 1,519-2,815 m; sub-sea completions 239-567 mbsf.

Total of 25 LWD holes. Drilled/logged section 6659 m.

Conventional wireline and pressure cores were acquired in 16 wells, with a total of 390 conventional core runs : 2834 m cored, 2271 m recovered. -104 HPCS (Hydraulic Piston Coring) cores: 909 m cored, 1015 m recovered. -182 ESCS (Extended Shoe Coring) cores: 1,658 m cored, 1,101 m recovered. -Formation temperatures were measured during HPCS using APCT-3.

Total of 104 PCTB (Pressure Coring) cores: 267 m cored, 156 m recovered.

Wireline logging conducted in 10 hole, open-ended drill pipe used to successfully re-entered logging tools into completed holes.

Wireline (MDT – Modular Dynamic Tester) formation pressure and flow tests successfully conducted in 2 holes.



#### Site NGHP-02-08 ProVision Plus LWD Log

Gas-hydrate-bearing Sand reservoir section Sh ~ 60% Free water phase ~ 5% K 0.01 – 0.5 mD

## Site NGHP-02-23

#### Modular Dynamic Testing (MDT)



Effective Permeability: MDT test analysis (~0.1 mD)

# **NGHP-02** Pressure Core Analysis



Pressure-core measurements (>10 mD) MDT/NMR test and log analysis (<1.0 mD)



## NGHP-02 Pressure Core Analysis Initial Effective Permeability



# Published Vertical Initial Effective Permeabilities Marine Pressure Core Analysis



Boswell et al., (in press)

# Published Vertical Initial Effective Permeabilities Marine/Permafrost NMR and MDT Analysis



Boswell et al., (in press)

# Site NGHP-02-16 Pressure Core Analysis Dissociation loading tests



Consolidation behavior after dissociation will first return to, then follow, the original normal consolidation curve for the hydrate-free host sediment.



# **Effective Permeability Changes During Production**



#### GH Production Modeling – Permeability Uncertainty Case 1A – Ke 0.1 md vs. Case 1B – Ke 10 md



# **Summary - Technical**

#### **GH** Prospecting - Characterization - Production Technology

#### Application of Petroleum System Concept

- Support of gas hydrate prospecting and assessments
- Target Resource is Substantial
  - 40,000 tcf globally
  - 10,000 tcf US offshore (BOEM)
  - 85 tcf technical recoverable Alaska (USGS 2008)

#### Base Production Technology Demonstrated

- Four successful Arctic permafrost related scientific field tests, additional marine tests in China, Japan, and planned for India
- Base technology (depressurization) identified
- Modeled rates encouraging (up to 40 mmscf/d)
- Recovery should be high (70-80%)
- Long-term test required; Alaska opportunity in progressing

#### • Wells Will be Challenging

- Cold reservoirs, low-pressure, etc.
- Produced water & subsidence concerns
- Environmental impact monitoring









2017 JOGMEC Nankai Trough Test Well

# Summary - Challenges GH Prospecting - Characterization - Production Technology

#### **Challenges**

- In support of gas hydrate production modeling and testing efforts, continue to develop pressure coring equipment and pressure core analysis capabilities.
- <u>"Scientific"</u> production/mechanical testing designed to maximize scientific insight.
- Testing needs to include advance monitor programs to identify and assess mechanical/environmental response/impacts.
- Further development and calibration of gas hydrate production and mechanical models with results from field testing and pressure cores.
- <u>"Demonstration"</u> production/mechanical tests designed to maximize rates and establish deliverability.