

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Overview of Status of Hydrogen Fueling Infrastructure in U.S.

Neha Rustagi - Fuel Cell Technologies Office

International Hydrogen Infrastructure Workshop

Boston, MA – September 11, 2018

Multiple H₂ and Fuel Cell Applications in the U.S.

Growth in Liquid Stations Planned in California

Based on data from National Renewable Energy Laboratory

Status and Growth of Hydrogen Fueling Network

Current and Projected Hydrogen Fueling Capacity in California¹

- 1. https://www.arb.ca.gov/msprog/zevprog/ab8/ab8_report_2018_print.pdf
- 2. Source: Applications to CEC GFO-15-1605

- 12 stations planned in Massachusetts, Connecticut, Rhode Island, New Jersey, New York.
 - ✓ 4 currently in "shakedown" testing
- Northeast stations to be supplied by tube trailers, and filled at two 21,000 kg/day liquid terminals located in NYC and Boston.
- California station capacities:
 60 kg/day- 500 kg/day.¹
 - Average cost of stations >300 kg/day: \$2.6M²
- California stations' average utilization rate: 36%.¹
- Most current stations co-located with gasoline stations.

Planned Growth in Fueling Infrastructure

1. https://cafcp.org/sites/default/files/CAFCR.pdf

- 1,000 H₂ stations could provide coverage for 1 million FCEVs.²
- Co-location of stations for light-duty vehicles with stations for medium- and heavy-duty vehicles along freight corridors is of particular interest.²
- In core market areas, station with at least 2 fueling positions, and ability to handle at least 3 back-to-back fills are of interest.²
- By 2030, average station capacity of 1,200 kg/day expected.²

2. https://www.arb.ca.gov/msprog/zevprog/ab8/ab8_report_2018_print.pdf

Pathway to Lower Cost of H₂ Distribution and Dispensing

Data collection on stations helps guide future R&D

Data Validation of Real World Applications through the NREL's NFCTEC

• Data products provide insights on technology improvements, issues and gaps

Station Reliability

Known Causes of Hydrogen Fueling Station Maintenance Hours¹

- Dispenser failures (e.g. leaks, design flaws in nozzles, communication errors in nozzles) account for majority of maintenance events.
- Compressor failures (e.g. failed valve parts, failed seal materials) are second highest cause of maintenance.
- Within safety systems, failure of communications and electrical supply, are common.

Source: National Renewable Energy Laboratory Composite Data Products https://www.nrel.gov/hydrogen/infrastructure-cdps-all.html

Complementing Retail Stations: H₂ Refuel H-Prize

Hydrogen Fueling Station Footprint

Current Baseline Hydrogen Fueling Station Footprint (Based on NFPA-2)			
Station Supply Type	Bulk Storage at Station	Land Area	Preli
Gaseous Tube trailer	800 kg	18,480 ft ²	min
Liquid Tanker	800 kg	21,250 ft ²	
Onsite Electrolysis	15 kg	12,050 ft ²	

Source: Sandia National Laboratories

Potential Approaches to Reduce Station Footprint:

- Use of tube trailers/liquid tankers with shorter length
- Underground or canopy storage
- Use of quantitative risk analysis to guide station design (performance basis)

Collaboration Tools: H₂ Safety Information Sharing

H₂Tools.org : A one stop resource for hydrogen safety

h2tools.org

- Includes resources on safety best practices, first responder training, and H₂ codes & standards
- Site visit tracking shows a global reach:
 50% of visits have been international after launch
- Over 250,000 site visits
- Training resource translated into
 Japanese. Interest in other languages.

Opportunities for outreach and to increase awareness

Celebrate National Hydrogen & Fuel Cell Day October 8 or 10/8

(Held on its very own atomic-weight-day)

Information and Training Resources to Increase Awareness

H2tools.org

INCREASE YOUR

Download for free at: energy.gov/eere/fuelcells/downloads/increa se-your-h2iq-training-resource

Learn more at: energy.gov/eere/fuelcells

H2@scale: Enabling affordable, reliable, clean, and secure energy across sectors

Questions?