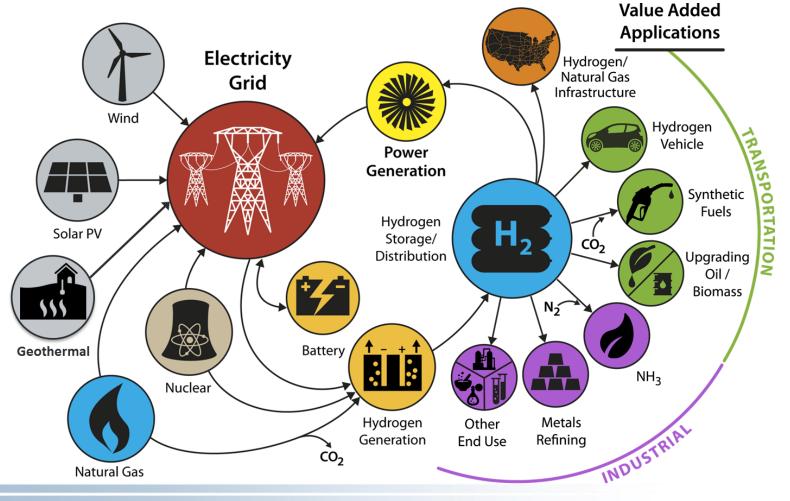
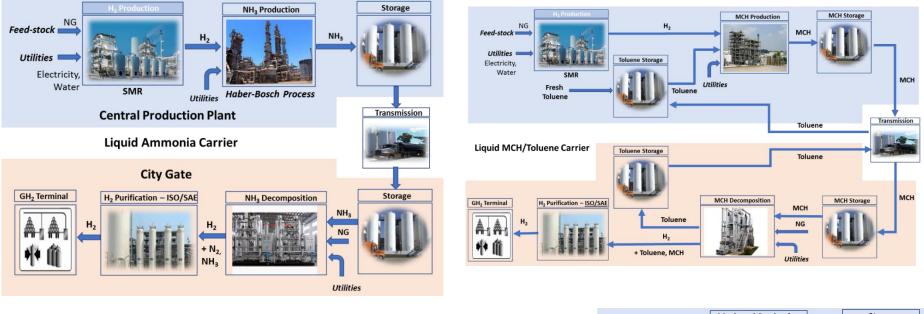


Chemical Carrier Concepts for Hydrogen Delivery

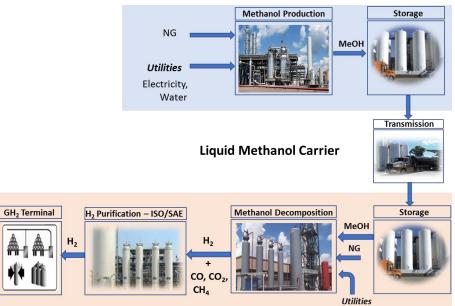
D.D. Papadias, J-K Peng, and R.K. Ahluwalia

International Hydrogen Infrastructure Workshop Boston Convention and Exhibition Center Boston, MA September 11-12, 2018


This presentation does not contain any proprietary, confidential, or otherwise restricted information.


Chemical Carrier Concepts for Hydrogen Delivery

Conventional hydrogen transportation and storage methods have limitations

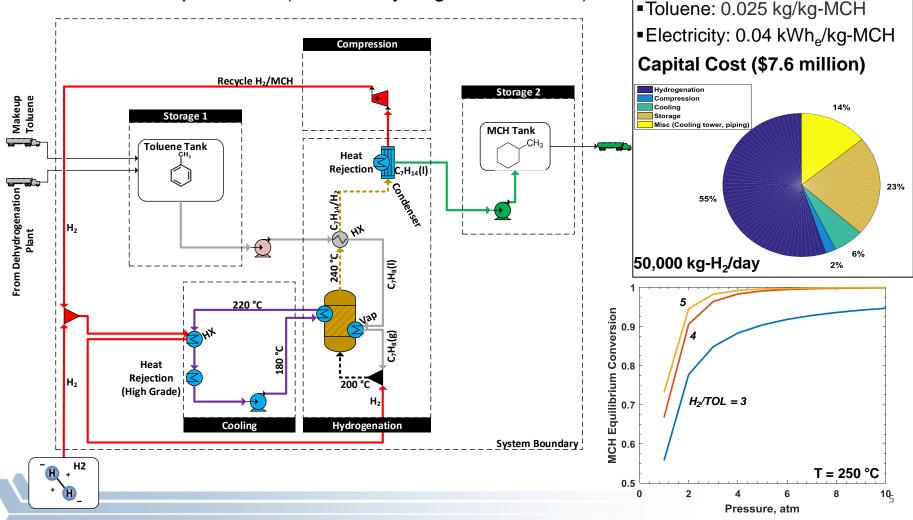

- cH₂ tube trailers: high pressures (200-500 bars), 250-1000 kg payload
- LH₂ trailers: 4000 kg payload but require multi-layer vacuum insulation
- cH₂ storage: Three geologic storage caverns in use in USA, compression costs
- LH₂ storage: Currently nine liquefaction plants in USA, energy intensive, boil-off losses

Hydrogen Carrier Pathways – Small Plants

MP	BP	H ₂ Capacity		Production		Decomposition				
°C	°C	wt%	g/L	P, bar	T, °C	P, bar	T, °C	ΔH		
								kJ/mol-H ₂		
Ammonia										
-78	-33.4	17.6	121	150	375	20	800	30.6		
				Haber-Bosch Process		High-Temperature Cracking				
				Fe Based Catalyst		Ni Catalyst				
Methan	ol									
-98	64.7	18.75	149	51	250	3	290	16.6		
				Cu/ZnO/Al ₂ O ₃ Catalyst		Steam Reforming				
MCH										
-127	101	6.1	47	10	240	2	350	68.3		
				Non-PGM Catalyst		Pt/Al ₂ O ₃ Catalyst				

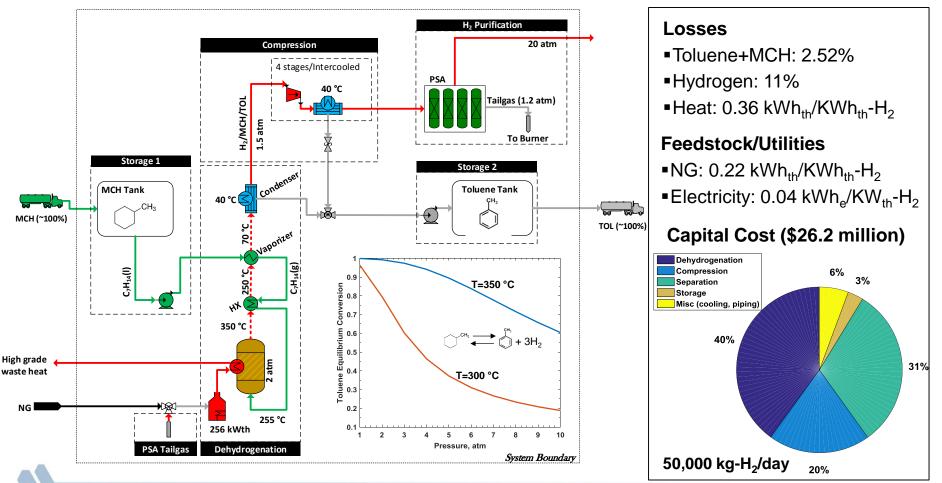
H₂ Carrier Study: Tools and Parameters

Financial Assumptions	City H_2 annual average daily use = 50,000 kg- H_2 /day;					
	Operating capacity factor = 90% ; Internal rate of return (IRR) = 10% ;					
	Depreciation (MACRS)=15 yrs; Plant life=30 yrs; Construction period=3 yrs					
	NG	Electricity	Water	Toluene		
Feedstock and Utilities	6.00 \$/MBtu	5.74 ¢/kWh	0.54 ¢/gal	0.768 \$/kg		
H ₂ Production by SMR, /kg-H ₂	0.156 MBtu	0.569 kWh	3.35 gal			
Hydrogenation						
Ammonia	Haber-Bosch process and cryogenic air separation unit; 350 tpd;					
Methanol	Steam reforming of CH_4/CO_2 to synthesis gas $(H_2-CO)/(CO+CO_2)=2.05$;					
	Conversion to methanol; methanol purification; 320 tpd;					
Toluene	>99% conversion of toluene to MCH over non-PGM catalyst					
Dehydrogenation						
Ammonia	Catalytic decomposition of ammonia at high temperatures;					
	H_2 purification by PSA at 20 atm (85% recovery)					
Methanol	Catalytic steam reforming, H_2 purification by PSA at 20 atm (85% recovery)					
MCH	99% conversion of MCH to toulene; 2.5% make-up toluene					
	H_2 purification by PSA at 20 atm (90% recovery)					
Transmission	HDSAM v 3.1, Truck Liquid Delivery					
	Ammonia	Methanol	MCH	GH_2		
Payload (kg)	22,500	22,500	22,500	1,042		
Volume (m ³)	37	28	29	36		
H ₂ (kg)	3398	3465	1112	1042		
GH ₂ Terminal	H_2 TerminalHDSAM v 3.1, Compressed Gas H_2 Terminal					
H ₂ Distribution	400 kg/day H_2 dispensing rate at refueling station					


Rath, L. (2011). Cost and performance baseline for fossil energy plants: Coal to synthetic natural gas and ammonia. DOE/NETL-2010/1402. Tan, E. et al. (2015). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons via indirect liquefaction. NREL/TP-5100-62402.

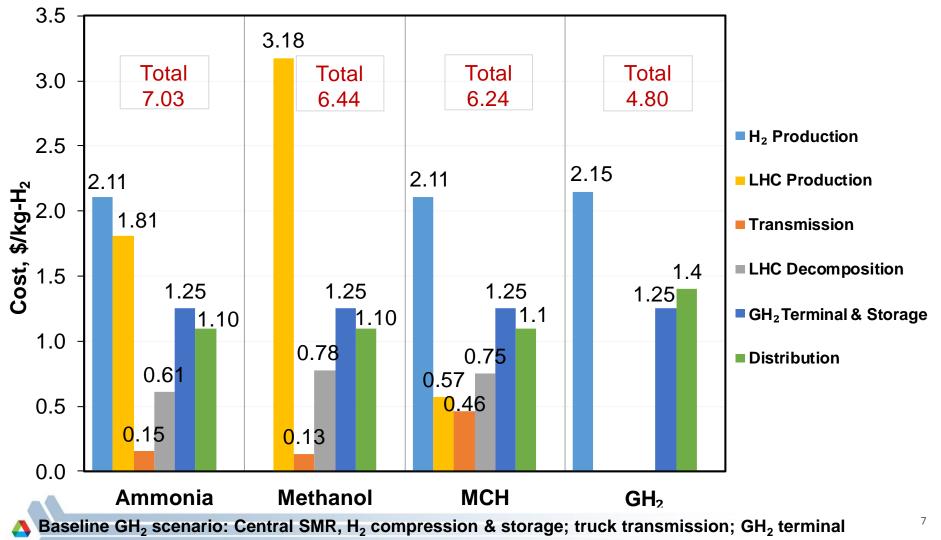
Campbell, C. (2014). Hydrogen storage and fuel processing strategies. PhD Thesis, Newcastle University

Hydrogenation of Toluene


Feedstock/Utilities

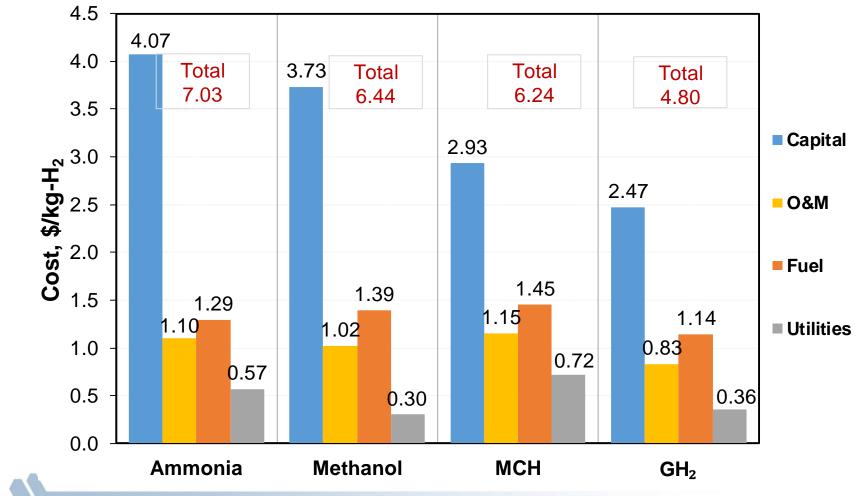
- Reactor operated at 240°C and 10 atm for nearly complete conversion. Conversion is kinetically limited. No side-reactions are considered.
- Allowing for 0.5 atm pressure drop, 98.5% of MCH condenses at 9.5 atm and 45°C
- Excess H₂ and MCH vapor recycled (H₂/Toluene ratio = 4/1)
- Toluene makeup = 2.52% (due to dehydrogenation losses)

Dehydrogenation of Methylcyclohexane


- Reactor operated at 350°C and 2 atm. Conversion is 99% and is equilibrium limited. No side-reactions considered.
- Allowing for 0.5 atm pressure, 80% of toluene condenses at 1.5 atm and 40°C
- Remaining toluene condenses during the compression cycle (4 stages)
- H₂ separation by PSA at 20 atm, 90% recovery (ISO/SAE H₂ quality)

Levelized Cost of H₂ Distributed to Stations (50,000 kg-H₂/d)

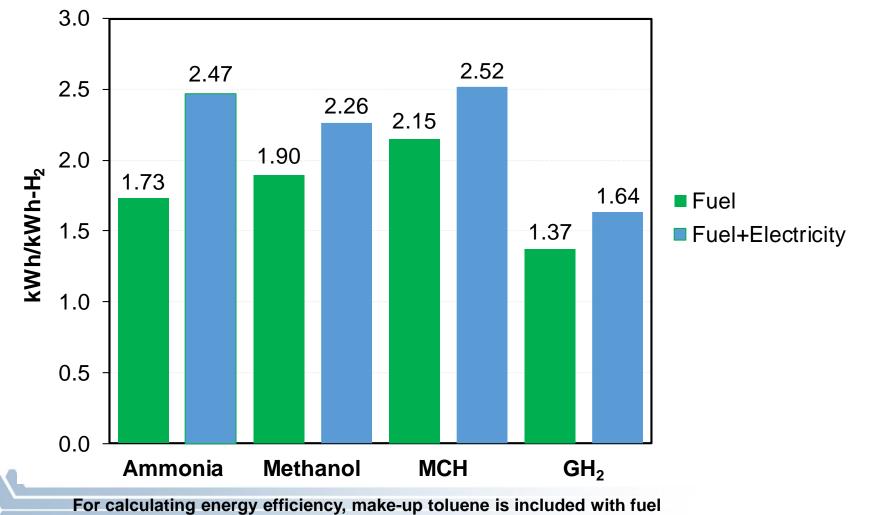
Liquid carrier options incur incremental costs of 1.44-2.23 \$/kg-H₂ (33 - 47%)


- LHC production costs (\$/kg-H₂): ammonia (1.81) > methanol (1.13) > MCH (0.57)
- LHC decomposition costs ($kg-H_2$): methanol (0.78) \cong MCH (0.75) > ammonia (0.61)
- Transmission & distribution ($k/kg-H_2$): MCH (1.56) > GH₂ (1.40) > ammonia \cong methanol (1.24)

Breakdown of Levelized Cost of H₂ Distributed to Stations

Sources of increases in levelized costs compared to GH₂ scenario

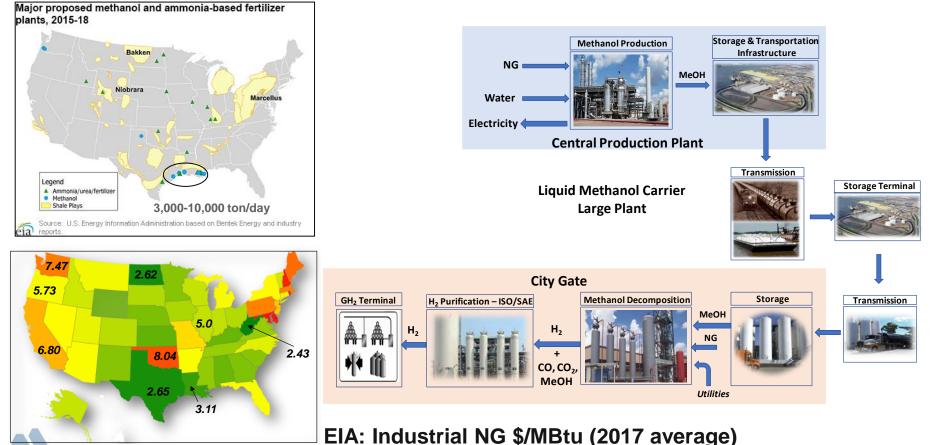
- Ammonia: 72% capital; remaining equally between O&M, fuel and utilities
- Methanol: 77% capital; comparable O&M and fuel; small for utilities
- MCH: 32% capital; remaining equally between O&M, fuel and utilities



For cost breakdown, fuel refers to natural gas (NG); utilities include electricity, water & make-up toluene

Energy Efficiency

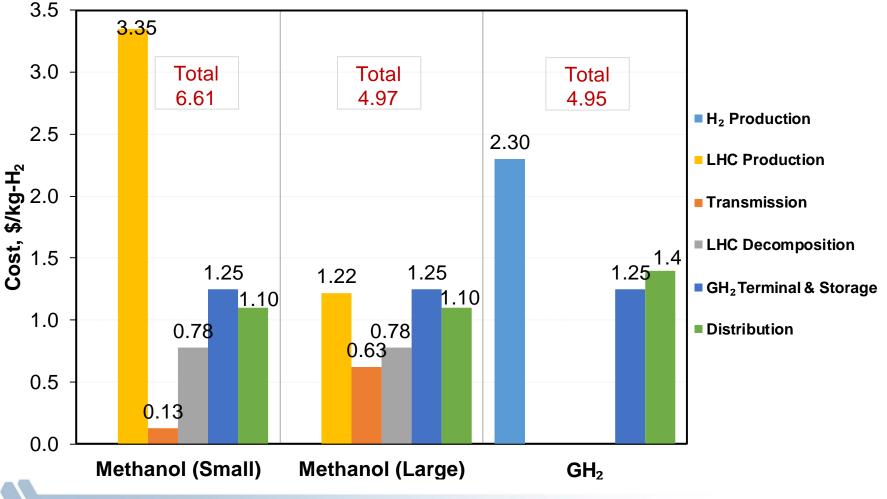
Endothermic dehydrogenation step including PSA at city gate is the largest contributor to the 38-54% increase in energy consumption


- Total energy includes fuel plus electrical energy, assuming 33% efficiency in generating electrical power
- Energy consumption (kWh/kWh-H₂): MCH \cong ammonia (2.52) > methanol (2.26) > GH₂ (1.64)

Hydrogen Carrier Pathways – Large Plants

Scenario: Large hydrogenation plant for economy of scale

- Methanol Production: 10,000 tons per day; syngas production by ATR
- Location: Gulf of Mexico; low NG price outlook; diverse sources; plethora of critical energy infrastructure
- Transmission: Unit train to storage terminal in California (3250 km); local transmission by truck (150 km) to city gate



Levelized Cost of H₂ Distributed to Stations (50,000 kg-H₂/d)

Liquid carrier can be competitive with the baseline GH_2 scenario.

Large (10,000 tpd) vs. small (320 tpd) methanol production plants

- 0.92 \$/kg-H₂ lower LHC production capital cost
- 0.86 \$/kg-H₂ lower feedstock cost (\$2.65/MBtu vs. \$6.80/MBtu NG cost)

Next Steps

- 1. Calibrate initial results
 - Field data for ammonia and methanol plants of different capacities
 - MCH production and dehydrogenation
- 2. Analyze scenarios that favor hydrogen carriers
 - Case studies with different supply and demand scenarios
- 3. Investigate carriers that are particularly suitable for renewable hydrogen production and energy storage
- 4. Conduct reverse engineering to determine desirable properties of liquid carriers