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Conventional hydrogen transportation and storage methods have limitations

 cH2 tube trailers: high pressures (200-500 bars), 250-1000 kg payload

 LH2 trailers: 4000 kg payload but require multi-layer vacuum insulation

 cH2 storage: Three geologic storage caverns in use in USA, compression costs

 LH2 storage: Currently nine liquefaction plants in USA, energy intensive, boil-off losses



Hydrogen Carrier Pathways – Small Plants
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MP BP
o
C

o
C wt% g/L P, bar T, 

o
C P, bar T, 

o
C DH

kJ/mol-H2

Ammonia

-78 -33.4 17.6 121 150 375 20 800 30.6

Methanol

-98 64.7 18.75 149 51 250 3 290 16.6

MCH

-127 101 6.1 47 10 240 2 350 68.3

Cu/ZnO/Al2O3 Catalyst

Non-PGM Catalyst Pt/Al2O3 Catalyst

High-Temperature Cracking

Ni Catalyst

Steam Reforming

Production DecompositionH2 Capacity

Haber-Bosch Process

Fe Based Catalyst



H2 Carrier Study: Tools and Parameters
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Financial Assumptions City H2 annual average daily use = 50,000 kg-H2/day; 

Operating capacity factor = 90%; Internal rate of return (IRR) = 10%; 

Depreciation (MACRS)=15 yrs; Plant life=30 yrs; Construction period=3 yrs

NG Electricity Water Toluene

Feedstock and Utilities 6.00 $/MBtu 5.74 ¢/kWh 0.54 ¢/gal 0.768 $/kg

H2 Production by SMR, /kg-H2 0.156 MBtu 0.569 kWh 3.35 gal

Hydrogenation

Ammonia Haber-Bosch process and cryogenic air separation unit; 350 tpd;

Methanol Steam reforming of CH4/CO2 to synthesis gas (H2-CO)/(CO+CO2)=2.05;

Conversion to methanol; methanol purification; 320 tpd;

Toluene >99% conversion of toluene to MCH over non-PGM catalyst

Dehydrogenation

Ammonia Catalytic decomposition of ammonia at high temperatures; 

H2 purification by PSA at 20 atm (85% recovery)

Methanol Catalytic steam reforming, H2 purification by PSA at 20 atm (85% recovery)

MCH 99% conversion of MCH to toulene; 2.5% make-up toluene

H2 purification by PSA at 20 atm (90% recovery)

Transmission HDSAM v 3.1, Truck Liquid Delivery 

Ammonia Methanol MCH GH2

Payload (kg) 22,500 22,500 22,500 1,042

Volume (m
3
) 37 28 29 36

H2 (kg) 3398 3465 1112 1042

GH2 Terminal HDSAM v 3.1, Compressed Gas H2 Terminal 

H2 Distribution 400 kg/day H2 dispensing rate at refueling station 
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Hydrogenation of Toluene

 Reactor operated at 240°C and 10 atm for nearly complete conversion. Conversion is 

kinetically limited. No side-reactions are considered. 

 Allowing for 0.5 atm pressure drop, 98.5% of MCH condenses at 9.5 atm and 45°C

 Excess H2 and MCH vapor recycled (H2/Toluene ratio = 4/1)

 Toluene makeup = 2.52% (due to dehydrogenation losses) Feedstock/Utilities

Toluene: 0.025 kg/kg-MCH

Electricity: 0.04 kWhe/kg-MCH

Capital Cost ($7.6 million) 

50,000 kg-H2/day
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Dehydrogenation of Methylcyclohexane

 Reactor operated at 350°C and 2 atm. Conversion is 99% and is equilibrium limited. No 

side-reactions considered. 

 Allowing for 0.5 atm pressure, 80% of toluene condenses at 1.5 atm and 40°C

 Remaining toluene condenses during the compression cycle (4 stages)

 H2 separation by PSA at 20 atm, 90% recovery (ISO/SAE H2 quality)

T=300  C

T=350  C

Losses

Toluene+MCH: 2.52%

Hydrogen: 11%

Heat: 0.36 kWhth/KWhth-H2

Feedstock/Utilities

NG: 0.22 kWhth/KWhth-H2

Electricity: 0.04 kWhe/KWth-H2

+ 3H2

Capital Cost ($26.2 million) 

50,000 kg-H2/day



Levelized Cost of H2 Distributed to Stations (50,000 kg-H2/d)
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Liquid carrier options incur incremental costs of 1.44-2.23 $/kg-H2 (33 - 47%)

 LHC production costs ($/kg-H2): ammonia (1.81) > methanol (1.13) > MCH (0.57)

 LHC decomposition costs ($/kg-H2): methanol (0.78) ≅ MCH (0.75) > ammonia (0.61)

 Transmission & distribution ($/kg-H2): MCH (1.56) > GH2 (1.40) > ammonia ≅ methanol (1.24)

Baseline GH2 scenario: Central SMR, H2 compression & storage; truck transmission; GH2 terminal
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Breakdown of Levelized Cost of  H2 Distributed to Stations
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Sources of increases in levelized costs compared to GH2 scenario

 Ammonia: 72% capital; remaining equally between O&M, fuel and utilities

 Methanol: 77% capital; comparable O&M and fuel; small for utilities

 MCH: 32% capital; remaining equally between O&M, fuel and utilities

For cost breakdown, fuel refers to natural gas (NG); utilities include electricity, water & make-up toluene
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Energy Efficiency
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Endothermic dehydrogenation step including PSA at city gate is the largest contributor to the 

38-54% increase in energy consumption 

 Total energy includes fuel plus electrical energy, assuming 33% efficiency in generating 

electrical power 

 Energy consumption (kWh/kWh-H2): MCH ≅ ammonia (2.52) > methanol (2.26) > GH2 (1.64)
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Hydrogen Carrier Pathways – Large Plants
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Levelized Cost of H2 Distributed to Stations (50,000 kg-H2/d)

Liquid carrier can be competitive with the baseline GH2 scenario. 

Large (10,000 tpd) vs. small (320 tpd) methanol production plants

 0.92 $/kg-H2 lower LHC production capital cost 

 0.86 $/kg-H2 lower feedstock cost ($2.65/MBtu vs. $6.80/MBtu NG cost)
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Next Steps

1. Calibrate initial results

 Field data for ammonia and methanol plants of different capacities

 MCH production and dehydrogenation

2. Analyze scenarios that favor hydrogen carriers

 Case studies with different supply and demand scenarios

3. Investigate carriers that are particularly suitable for renewable hydrogen 

production and energy storage

4. Conduct reverse engineering to determine desirable properties of liquid 

carriers




