### Electrochemical Approaches to Hydrogen Contaminant Detection



Team:

Eric L. Brosha, Chris J. Romero, Tommy Rockward and Rangachary (Mukund) Mukundan

Sept 12, 2018



UNCLASSIFIED



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

# Outline

- Problem Statement
- Potential Solutions
  SKYRE, Southwest Sciences Inc., LANL
- Prototype development at LANL
- Field Testing at H2Frontier
- Future Work/Summary







### **Problem Statement**

#### Problem:

Certain contaminants in the hydrogen fuel steam can cause irreversible damage to Fuel Cell systems and therefore should be avoided. Stations required to do expensive certification (≈ \$3500) periodically ( 6 months) to meet SAE J2719 standard. An in-line fuel quality analyzer can significantly improve the reliability of the Hydrogen Infrastructure and alert station operators to problems in a timely manner

#### **Requirements:**

1. A low cost (< \$1000) fast response (< 5 minutes) device (analyzer) to measure impurities in a dry hydrogen fuel stream at or above the SAE J2719 levels.

| SAE J2719 impurities                                                                    | Allowed levels                       |
|-----------------------------------------------------------------------------------------|--------------------------------------|
| Carbon Monoxide (CO)<br>Hydrogen Sulfide $(H_2S)$<br>Ammonia $(NH_3)$<br>Water $(H_2O)$ | 200 ppb<br>4 ppb<br>100 ppb<br>5 ppm |
|                                                                                         |                                      |



### **DOE funded Solutions**

**SCS program (Project Manager: Laura Hill)** SKYRE (SBIR) : High pressure electrochemical sensor Southwest Sciences Inc (SBIR) : Diode Laser Sensor LANL : Electrochemical H<sub>2</sub> fuel quality analyzer SKYRE and University of Connecticut

- High pressure test system designed/built at SKYRE to evaluate sensors upto 4500 psi
- Thermocouple type device with wire electrodes covered with Nafion<sup>®</sup> electrolyte
- High pressure humidifier bottle is part of system





Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

### **DOE funded Solutions**

#### **Southwest Sciences, Inc**



- Developed different lasers for detection of CO, H<sub>2</sub>S, NH<sub>3</sub> and water
- Technology originally developed for atmospheric monitoring
- In laboratory testing to be validated at LANL





### LANL Approach

- A miniature fuel cell can be used in the hydrogen stream to detect impurities that can be harmful to the fuel cell stack
- However, no continuous source of air or water available at the filling station Anode  $H_2 \xrightarrow{P_1} 2H^+ + 2e^-$
- Device operates as an electrochemical hydrogen pump using a MEA-type configuration. Measure pumping current before, during and after Pt Low surface contaminant exposure. (No Air required) Catalyst
- Provide hydration via a *Wicking Scheme*







Pt type

Electrode

Cathode

 $2H^+ + 2e^- \rightarrow H_2$ 

e

area

### **Pulsed Operating Mode Demonstrated**

A7 Periodic Surface Cleaning: 200 sccm Baseline H<sub>2</sub>, 500ppb CO/H<sub>2</sub> and 50ppm CO/H<sub>2</sub>



Ave. Response Time: 500ppb CO: **3.48 min** 50ppm CO: **1.5 min** 

1.5V, 30s clean up pulses between 15 minute measurements at 0.1V

### **Response time < 5 min (filling up 1 car)**

UNCLASSIFIED





Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

### CO detected at SAE J2719 Level



Ave Response Time: 6.9 min

Adjusted Trigger Level Ave Response Time: **2.5 min** 

#### Sensitivity to 200ppb CO in < 5 minutes demonstrated



UNCLASSIFIED



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

### **Collaborator: Testing Partner for Analyzer Field Trials**



Hydrogen Generation, Storage & Delivery Systems



- Dan Poppe at H2Frontier volunteered access to the Burbank CA station for Analyzer Field Trials experiments.
- Collaboration established in 2014
- Experiments conducted remotely from LANL.

2017 Joint R&D 100 Entry Los Alamos National Laboratory, Lawrence Livermore National Laboratory, and Hydrogen Frontier, Inc.

#### HYDROGEN SAFETY SENSOR: Ready to Protect the New-Energy Economy

Filling Up Hydrogen-Fueled Vehicles Just Became a Lot Safer

Provide the sense of t

Lawrence Livermore National Laboratory



LANL, LLNL, and H2F capture R&D 100 award for hydrogen safety sensor work (previous SCS project)



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

### Analyzer Installed and Tested in Field (March 18)





- Installed analyzer and potentiostat in temp controlled enclosure
- Remote access software used to monitor and control experiments from Los Alamos





## **Field Data**



- Extensive baseline data obtained
- Demonstrated ability to detect low levels of impurities in H<sub>2</sub> with fast response time using a low cost instrument



### Remaining R&D needs

- Long term stability, drift and calibration
- Package analyzer with lower cost electronics
- Differentiate/Quantify CO, H<sub>2</sub>S with clean up voltage
- Eliminate MFCs and control flow with orifices
- Ability to operate under pressure at various locations within the H<sub>2</sub> fueling infrastructure
  - Eliminate wicking system
    - Decreases flow rate dependence of baseline
    - Decreases RH dependence of baseline
    - Decreases maintenance and calibration
    - Provides flexibility with packaging to position at various locations with in H<sub>2</sub> fueling infrastructure





### **Future Work / Summary**

- A miniature fuel cell with an external wicking system can be used to detect impurities in a dry H<sub>2</sub> stream.
  - Ambient pressure
  - Fixed flow rate of H<sub>2</sub>
- Ability to detect SAE J2719 levels of CO in  $\approx$  2.5 minutes
- Developing system with alternative electrolyte
  - Ability to operate without water source
  - Ability to operate under pressure
- Developing Impedance capability
  - Ability to operate at different temperatures
- Long term goal : Inline operation within refueling system
- Collaborating with SKYRE and Southwest Sciences



