Database of Polymeric Materials for Hydrogen Gas Seals and Dispensing Hoses

11 September 2018

Department of Mechanical Engineering, Faculty of Engineering, Kyushu University The Research Center for Hydrogen Industrial Use and Storage, Kyushu University

Shin Nishimura

Acknowledgement

This research has been supported by the New Energy and Industrial Technology Development Organization (NEDO) "Hydrogen utilization technology development (2013–2017)".

Hydrogen Polymers in HYDROGENIUS

Rubbers materials and polymeric materials are "**KEY MATERIALS**" for hydrogen gas seal in equipment for hydrogen energy system.

It is important to understand the relationship between structure of elastomeric compounds and their properties under high-pressure hydrogen.

We need diverse ideas from industries for the model compounds and hydrogen properties for measurement.

In 2012, we have established "The Research Group of Elastomers for Hydrogen Equipment" in The Society of Rubber Science and Technology, Japan.

In the research group, more than 40 members are active from the viewpoints of materials and elastomeric compounds design, hydrogen equipment design.

Polymeric Materials for Hydrogen Equipment

Rubbers and polymeric materials are used for gas seals and liners in the hydrogen equipment.

Fracture of O-ring by Hydrogen

Key Parameters for Fracture Modes of O-ring

Design of Model Rubber Compounds

ITEMS	NBR NF	NBR CB50	NBR CB25	NBR SC60	NBR SC30	EPDM NF	EPDM CB50	EPDM CB25	EPDM SC60	EPDM SC30
NBR(Nipol 1042)	100	100	100	100	100	-	-	-	-	-
EPDM(Esprene 505)	-	-	-	-	-	100	100	100	100	100
Stearic Acid	1	1	1	1	1	1	1	1	1	1
Zinc Oxide	5	5	5	5	5	5	5	5	5	5
Sulfur	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
MBTS	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
TMTD	0.7	0.7	0.7	0.7	0.7	0.5	0.5	0.5	0.5	0.5
ZnEDC	0.7	0.7	0.7	0.7	0.7	-	-	-	-	-
Carbonblack(N330)	-	50	25	-	-	-	50	25	-	-
Silica(Nipsil VN3)	-	-	-	60	30	-	-	-	60	30

(−CH₂ / CH $(CH_2 - CH_2) - (CH_2 - CH_2)$ **Ethylene Propylene** Acrylonitoril Butadiene CH3 Rubber (EPDM) Rubber (NBR) C_2H_5 C_2H_5 C_2H_5 H₂(Bis(dimethylthiocarbamoyl) Zinc Diethylthio-2,2'-Benzothiazyl Disulfide (TMTD) carbamate (ZnEDC) Disulfide (MBTS)

Measurement of Hydrogen Content

Thermal Desorption Analysis (TDA)

Hydrogen Content Estimation

•After exposure to hydrogen gas, hydrogen content was measured by TDA. •A large volume of hydrogen release is considered before the measurement tests. \Rightarrow Eq. (1) was fitted to remaining hydrogen content by using the least square method regarding equilibrium hydrogen content and diffusivity as unknown parameters, and the equilibrium hydrogen content was estimated by extrapolation.

Hydrogen release profile of hydrogen-exposed specimen of NBR-NF.

(5) A. Demarez, A. G. Hock, F. A. Meunier, Acta Metallurgica, 2, 214 (1954).

KEYENCE 2D Silhouette Scanner TM-3000

Measuremen Area	<i>ф</i> 65mm
Detection Limit	0.5mm
Distance to Ditector	270mm
Light Source	InGaN LED
Dimensional	$\pm 3\mu\mathrm{m}$
Repeat Accuracy	$\pm 0.2\mu$ m
Measuremen	5.5ms
Sample Dimension	¢13mmx2mm

The equipment is in the thermostat chamber. the temperature of the chamber is controlled at 30°C, same as TDA measurement.

The volume of 8 samples can be measured at same time in every 5 minutes, same as TDA measurement.

The surface area of the sample (13mmφ×2mmt) can be measured . The volume of the sample can be estimated by cube square root of the surface area. The results are consistent with Archmedean method.

Exposure Pressure Dependency of Hydrogen Content 1

Hydrogen contents of model composites after hydrogen exposure are proportional to the hydrogen exposure pressure. Hydrogen contents of carbon black filled NBR are larger than those of unfilled and silica filled rubbers. Volume change of model composites after hydrogen exposure are proportional to the hydrogen exposure pressure. Filled rubbers shows smaller volume change.

Relationship between H₂ content and volume

Model NBR Compound

Grade	Acrylonitrile Content	Density (g/cm ³)
Low Nitrile	18%	0.94
Mid Nitrile	29%	0.97
Mid-High Nitrile	33.5%	0.98
High Nitrile	40.5%	1.00
Very High Nitrile	50%	1.02

Compound:Sulfur vulcanization system Sulfur:1.5 phr, MBTS:1.5 phr, TMTD:0.7 phr, ZnEDC:0.7 phr Stearic acid: 1 phr, Zinc Oxide:5 phr

High polar NBR polymer suppress hydrogen penetration and volume inflation.

Unfilled NBR:Polymer Polarity

Volume inflation per hydrogen content is constant for all NBR.

CB filled NBR:CB surface area

	SAF (N110)	ISAF (N220)	HAF (N330)	FEF (N550)	SRF (N774)	MT (N990)
Average Particle Size (nm)	19	22	28	43	66	280
Nitrogen Surface Area (m²/g)	142	119	79	42	27	7-12
DBP Absorption (cm ³ /100g)	115	114	101	115	68	44
HAF	(N330)	10µm			5µm	

000001 W014 5mm 5. 0kV x3. 0k 10us

000001 W014 See 5. 0kV x6. 0k 5um

CB filled NBR:CB surface area

Carbonblack filled NBR's showed high hydrogen content and low volume inflation.

CB filled NBR:CB surface area

Hydrogen Content of Polymeric Materials

Polyethylene

Category		Туре	Molding	XWAXS	XDSC	ρ
LDPE	Low density	NOVATEC LD ZE41K	Heat Press	44.4	42	0.917
LLDPE	Linear low density	NOVATEC LL UR951	Heat Press	43.8	36	0.916
UHMWPE	Ultra High Mw	SKF ECOWARE 1000	Heat Press	62.1	49	0.924
MDPE	Middle density	JPE PE80	Heat Press	73.4	62	0.934
HDPE	High density	NOVATEC HD HB111R	Heat Press	76.1	59	0.942
		NOVATEC HD HB111R	Heat Press	76.4	64	0.943
		NOVATEC HD HB111R	Blow	75.1	56	0.941
		NOVATEC HD HB212R	Heat Press	78.6	64	0.946
		JPE PE100	Heat Press	80.0	65	0.947
		Hi-ZEX 7000F	Injection	78.7	67	0.947

 $|_{DSC}^{WAXS}(\%)$: Degree of Crystallinity determined by Wide Angle X-ray Scattering $|_{DSC}^{DSC}(\%)$: Degree of Crystallinity determined by Differential Scanning Calorimetry (g/cm^3) : Density determined by Archimedean method

PEの水素特性評価

Summary

- Polymeric materials can be fractured by blisters and volume increment, which are originated from penetrated hydrogen.
- Volume change ratio is proportional to its hydrogen content. Carbon black can reduce the volume change of the compounds nevertheless their hydrogen contents are high.
- According to the results of model materials, O-rings for hydrogen equipment, such as breakaway device, are developed
- Liner materials of high-pressure hydrogen hoses and type IV tanks are required that low permeability of hydrogen, high durability for pressure cycles, good controllability of interface with metal materials.
- Database of elastomers for hydrogen equipment is now under discussion in the research group of the Society of Rubber Science and Technology, Japan.

Thank you very much for your kind attention.