

Quantitative Risk Analysis to Guide Station Design

Gabriela Bran-Anleu

Team: Chris LaFleur, Alice Muna, Brian Ehrhart, Myra Blaylock, Ethan Hecht

Sandia National Laboratories

September 11, 2018

SAND2018-10661 PE

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA-0003525

HFCHydrogen and Fuel Cells Program

Quantitative Risk Assessment is enabling infrastructure deployment

HFCHydrogen and Fuel Cells Program

Hydrogen behavior studies are at the foundation of consequence modeling capabilities

Coordinated activities to enable consistent, rigorous, and accepted safety analysis

Developing methods, data, tools for H₂ safety & SCS

5

Building a Scientific Platform for Hydrogen QRA

Challenge: A quality QRA incorporates a large body of information from different areas

HyRAM: Making hydrogen safety science accessible through integrated tools

First-of-its-kind integration platform for state-of-the-art hydrogen safety models & data - built to put the R&D into the hands of industry safety experts

Core functionality:

- Quantitative risk assessment (QRA) methodology
- Frequency & probability data for hydrogen component failures
- Fast-running models of hydrogen gas and flame behaviors

Key features:

- GUI & Mathematics Middleware
- Documented approach, models, algorithms
- Flexible and expandable framework; supported by active R&D

Current release is version 1.1.1.1341

Major Elements of HyRAM Software: QRA Mode

QRA Methodology

- Risk metrics calculations: FAR, PLL, AIR
- Scenario models & frequency
- Release frequency
- Harm models

Generic Freq. & Prob. data

- Ignition probabilities
- Component leak frequencies (9 types)

Software Language

- C# for GUI and QRA (planned conversion of QRA to Python)
- Python for Physics Modules

Documentation

- Algorithm report (SAND2017-2998)
- User guide (SAND2018-0749)

H,**F**CHydrogen and Fuel Cells Program

Major Elements of HyRAM Software: Physics Mode

Physics models

- Properties of Hydrogen
- Unignited releases: Orifice flow; Notional nozzles; Gas jet/plume; Accumulation in enclosures
- Ignited releases: Jet flames; overpressures in enclosures

Software Language

- Python for Modules
- C# for GUI

Documentation

- Algorithm report (SAND2017-2998)
- User guide (SAND2018-0749)

H_FCHydrogen and Fuel Cells Program

Summary

- HyRAM is an integration platform built to enable hydrogen safety for state-of-the-art H₂ safety models – enables consistent industry-led QRA and consequence analysis with documented, referenceable, validated models
- **Demonstrated Impact:** Enabling the deployment of refueling stations by developing science-based, risk-informed codes & standards
 - Analyses for NFPA 2 and ISO TR-19880-1
 - Benchmarked results (SAND2014-3416): Survey of proposed H2 stations show that changes to NFPA 2 gaseous separation distance requirements increased station siting options by 20%.

Thank you!

Gabriela Bran Anleu

Sandia National Laboratories

gabrana@sandia.gov

https://hyram.sandia.gov

Research supported by DOE Fuel Cell Technologies Office (DOE EERE/FCTO)

Technical Back-Up Slides

Benefits of Reduced-Order Models

- Short run-time
- Modeling expert not required
- Useful for quantification
 - If a hydrogen leak occurs, how far away does the hazard get?
- Useful for comparisons
 - What is the effect on safety is a system size is reduced?

Greater Fidelity and Flexibility of QRA Models

Expand HyRAM QRA beyond fueling stations

- Customization of event and fault trees
- Perform risk assessment and calculate risk results in an efficient manner
- Applicable for new hydrogen industries beyond fueling stations
- Underlying physics-based analysis would remain the same

H2 release H2 release H2 release Fault Trees Fault trees

Event Sequence Diagram

Customization of scenario will lead to broader application of HyRAM and hydrogen QRA

Laboratory-scale characterization of LH2 plumes and jets

- Validation of near-field model complete including mole fraction, temperature and velocity
- Development of diagnostic to measure fullscale cold vapor releases underway
- Development of full-scale release experiments underway

Validated LH2 release model will be used to risk-inform the revised LH2 bulk separation

Hydrogen and Fuel Cells Program

Sandia National Laboratories

R&D provides science-based tools: **Examples of Scenario & Probability models**

Accident sequences

Hazards considered: Thermal effects (jet fire), overpressure (explosion/deflagration)

Ignition probability

- Extrapolated from methane ignition probabilities
- Flow rate calculated using Release **Characteristics** module

Hydrogen Release Rate (kg/s)	Immediate Ignition Probability	Delayed Ignition Probability
<0.125	0.008	0.004
0.125 - 6.25	0.053	0.027
>6.25	0.23	0.12

Release frequency

Expected annual leak freq. for each component type -- Data developed from limited H2 data combined w/ data from other industries.

Joints Valves 10.00% 1.00% 100.009 Leak Area (% Flow Area)

Harm models

Probability of fatality from exposure to heat flux and overpressures – multiple options

R&D provides science-based tools:

Examples of Behavior & Consequence models

Release Characteristics

- Prediction of hydrogen jet plumes (concentration boundaries)
- Prediction of hydrogen jet flames
- Simplified models of hydrogen sources (choked flow, notional nozzles, etc)

Ignition/Flame Light-up

- Prediction of ignition (flammability factor concept)
- Identification of light-up boundaries
- Prediction of sustained flame

Flame Radiation

- Flame integral model, effects of buoyancy
- Multi-source models significantly improve heat flux prediction
- Surface reflection can be a major potential heat flux contributor

Deflagration within Enclosures

1% FF Flame Light u

- Overpressure associated with deflagration
- Quantitative role of ventilation

H_FCHydrogen and Fuel Cells Program

Overpressure & layer modules

&

Enables calculation of consequences inside of enclosures.

 Insight into enclosure design, effectiveness of mitigations

Output: Overpressure (ignited)

Height of accumulated layer (unignited)

Building a scientific platform for hydrogen QRA

