Polyester Digestion: VOLCAT

Summit on Realizing the Circular Carbon Economy

IBM Almaden; San Jose, CA

Bob Allen, Greg Breyta, Jamie Garcia, Gavin Jones and Jim Hedrick IBM Almaden Research Center July 24, 2018

IBM Materials Innovation: Polymer Materials

Catalytic Polymer Recycling @ IBM

- IBM invests in polymer science research to help enable next generation computing
- Computational chemistry, materials simulation and accelerating materials discovery through Al/ Machine Learning augment our experimental work
- Catalysts have been developed for the creation and breakdown of polymers
- We've developed a molecular sorter technology for r-PET (VOLCAT)
- We are interested in demanding applications moving these technologies to the next level through partnership

Jim Hedrick

Recycling of PET (r-PET): Challenges

C

Mechanical Recycling

- Sorting, washing (zero contamination tolerance)
- Only "non-colored" bottles
- High Temp Processing (T > 250°C)

COLOR/Low Quality

Chemical Recycling

- Chemical Depolymerization
- Reaction Product (Monomer) Requires Purification for Polymerization
- Incorporated into Virgin PET Polymerization

IBM's Organocatalytic depolymerization of PET

IBM's Organocatalytic depolymerization of PET

Gen 1 Catalyst: High Activity, Difficult Recovery, \$\$

Jim Hedrick

Fukushima, K; Coulembier, O.; Lecuyer, J. M.; Almegren, H. A.; Alabdulrahman, A. M.;
Alsewailem, F. D.; McNeil, M. A.; Dubois, P.; Waymouth, R. M.; Horn, H. W.; Rice, J. E.;
Hedrick, J.L. "Organocatalytic depolymerization of poly(ethylene terephthalate)" *J. Polym. Sci. Part A: Polymer Chem.* 2011, DOI: 10.1002/pola.24551.

6

IBM's PET catalytic depolymerization process (Gen 2 using DBU)

IBM's PET catalytic depolymerization process (Gen 2 using DBU)

Catalyst Evolution

Computational prediction that the use of excess EG leads to a change in the mechanism allows for other types of amines to be used to catalyze PET depolymerization.

Catalyst Evolution

Computational prediction that the use of excess EG leads to a change in the mechanism allows for other types of amines to be used to catalyze PET depolymerization.

Volcat Technology

BHET Monomer

- Fast/Selective Catalytic Process, low temperature, easy catalyst removal/recovery
- Key Attribute– VOLCAT is a "Molecular Sorter"
 - Minimize sorting, washing and rinsing of flakes
 - Reduce/eliminate color sorting
- Outstanding results with dirty clear and mixed/colored flake inputs

VOLCAT approach to recycled PET

Distinguishing Features:

- -Volatile Catalyst is active and easily recovered;
- -Low Grade Mixed PCR PET input can produce high grade r-PET
- -Sorted Colored Flake can produce high grade r-PET

Economic Outlook:

- -Lowest Cost Feedstocks and inexpensive catalyst
- -All chemicals used/recovered (no waste);
- -Low temperature/fast process

Other Advantages:

- -Potential to reduce / eliminate sorting
- -Potential to reduce / eliminate washing and rinsing

 R_3

R₁

VOLCAT Process Flow Today – a closed loop (as batch) process

•

Robust process tolerant of high degrees of contamination Dirty Mixed Flake Clean Mixed Flake

Unsorted, uncleaned flake; cheap input -A considerable amount of dirt is present (~4%)

Dirty Mixed Flake

Worst of the worst. "Curbside pickup" - Large amount (~8%) of "dirt" is present; cheapest input

All colored Flake from post-sorting/cleaning Cheapest input – little commercial use

PET/Nylon & PET/PVC flake sample

- PET flake with 3 wt% Nylon
- PET flake with 3 & 0.1 wt% PVC (NURRC + Aldrich)

VolCat Process with Clean Color Flake

The VOLCAT product filtered to remove this small amount of "blue stuff" (&some flake)

To give this turbid solution TO WHICH carbon was added

Filtration of carbon (left) to IX Treatment flask

Solution after post-IX filtration. Faintly blue, left to crystallize

To produce this!! – Filtration next.

VolCat Processed Colored Flake (5 kg)

BHET Product (polymerization grade)

All inputs provide similar results

Filtration Step Comparison

BHET polymerization to PET*: Polymer Characterization

Any/all feeds can be "VOLCAT-ed" to produce bottle grade BHET (50%)

$HO \longrightarrow O \longrightarrow OH \longrightarrow -EG \longrightarrow O \longrightarrow $		
BHET Monomer Source	Transparency (L*)	Color (b*)
Virgin PET (from TPA/EG)	93	2.3
Virgin PET; Glycolysis (re-polymerized)	87	8.0
VOLCAT BHET (clean, clear flake)	93	2.1
VOLCAT BHET (dirty clear)	92	5.9
VOLCAT BHET (colored flake)	92	5.6
VOLCAT BHET (curbside, dirty)	92	4.5

* Performed by DAK Americas, an Alpek Polyester Business

PET Chemical Recycling via VOLCAT

PET Chemical Upcycling via VOLCAT

Catalytic Polymer Recycling @ IBM: Other Processes

- PHT Thermosets: Depolymerization at low pH
- Conversion of Poly(carbonate) to Poly(ether sulfone)

Jeannette Garcia

