Forest Products Laboratory, Madison, WI

Building with Biomass (Wood)

Rick Bergman

Supervisory Research Wood Scientist USDA Forest Service Forest Products Laboratory Madison, WI July 25, 2018

Circular Carbon Economy Summit

Golden, CO

Outline

- Key points
- Forest carbon
- Harvested wood products
- Forest carbon pools
- Harvested wood product carbon flow
 - Long-term products
 - Short-term products
- GHG mitigation
- Life-cycle assessment
- Carbon impacts of wood
- Results
- Conclusions

- Wood is the primary biomass building material
- Wood can be used for products and for energy
- Wood used in construction, manufacturing, and shipping
- Wood baskets are the southeast and the PNW
- Forests cover 30% of U.S.
- Nearly all single-family houses in U.S. built with wood (US Census Bureau, 2018)
- Nearly all pallets in U.S. built with wood
- Life cycle assessment supports wood as a green building material (Ritter et al., 2013)

Why is forest carbon important?

- 4th most common element
- Trees are ~50% carbon (oven dry weight)
- Trees consume ~1.83 kg CO₂ to produce 1 kg of wood or 0.5 kg carbon

U.S. Housing

- Housing statistics
 - ~126 million households (US Census Bureau 2018)
 - Single-family units
 - 90% made from wood
 - Built annually, ~1 million units (Buehlmann and Alderman, 2018)
 - Half-life of 80 years (Skog, 2018)
 - Multi-family units
 - ~0.4 million units built annually ((Buehlmann and Alderman, 2018)
- Wood houses are about 5% cheaper than concrete or steel houses

Non-structural usage: Pallets

- Most wide-spread packaging system
- ~1.8 billion wood pallets in circulation in U.S.
 - 508 million new (Gerber et al. 2018)
 - 341 million recovered (Gerber et al. 2018)
 - 18.3 million pallets were landfilled (Shiner et al. 2018)
- 90% are wood in the United States (Bhattacharjya & Walters 2012)

Forest carbon pools

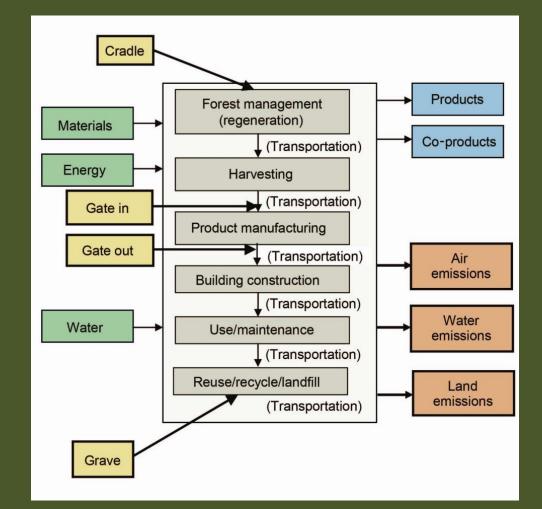
Forest stock carbon

- Lower 48 states: ~41,000 Tg C (Wear and Coulston 2015; McKinley et al. 2011)
- Net forest C sequestration rate (Wear and Coulston (2015))
 - 173 Tg C for 2013
 - Average is 216-313 Tg C/yr
 - Equivalent to 10-20% of US fossil fuel GHG emissions (USEPA 2010)
 - Rate varies by region

Forest carbon pools (cont.)

- Harvested wood product carbon
 - Wood in housing
 - Wood pallets
- Wood at end-of-life carbon
 - Landfilled
 - Gas flared into CO2
 - Gas captured or not
 - Burned for energy
 - Mulched
 - Recovered for re-use (pallets)

Harvested wood product C flow


GHG Mitigation

- Forests/trees sequester carbon
- Growing trees actively pull CO₂ from air
- Paper and wood products store carbon in use
 - Long-term products
 - Wood building products (huge market)
 - Bioproducts (small market)
 - Short-term products
 - Pulp and paper products (huge markets)
 - Bioenergy products (huge markets)
- Substitute for fossil-fuel intensive products
 - -1 ton of wood building product saves ~4 tons CO₂
- Post-recovery activities (cascading/recycling)
- Life-cycle assessment can cover all stages

Life-cycle assessment (LCA)

Can cover parts or all of the lifecycle from cradle-to-grave (nature-tonature)

>>>LCA tracks GHG (carbon) emissions of product production

Building with Biomass (Wood)

CORRIM LCA Project Goal

Objective: Examine the environmental performance on structural components in residential housing

Atlanta Minneapolis (wood- vs concrete-framed) (wood- vs steel-framed)

CORRIM: Consortium for Research on Renewable Industrial Materials (<u>www.corrim.org</u>): Lippke et al. 2004

Building with Biomass (Wood)

Carbon impacts of wood products

Objective:

State how wood products can mitigate carbon emissions through carbon storage, product substitution, and carbon sequestration

The Wood Product Carbon Impact Equation A-B-C-D = E

Bergman et al. (2014)

Results

- Wood housing
 - Stores ~725 Tg tonnes carbon (+/-20%)
 - Delays carbon emissions to atmosphere
- Wood pallets
 - Stores 16 Tg carbon
 - Less and less pallets to landfill
- Build more with wood (Nepal et al. 2016)
 - In low-rise non-residential construction
 - 7,707 thousand cubic meter of wood used to build
 - GHG emissions reduction of 240 Tg C over 50 years
 - Market-induced effects
 - Increased forest C stocks in the south

Things to Consider for Future

- Reforestation
 - Safeguards soil organic carbon
 - Provides a renewable carbon resources
- Afforestation
 - Increase forest carbon stocks
- Avoid deforestation
 - Replant
- Build more with wood in non-residential construction
 - Product substitution
 - GHG emission reduction strategy
 - Increase value of forests
- Cascading use of wood products
 - GHG emission mitigation strategy

Questions?

Rick Bergman rbergman@fs.fed.us (608) 231-9477

