

2018 Long-Term Stewardship Conference

Uranium Geochemistry in Groundwater and How to Communicate These Concepts to Laypeople

Raymond H. Johnson, Ph.D.

Navarro Research and Engineering, Inc. Contractor to the U.S. Department of Energy (DOE) Office of Legacy Management

> Session Track 1.1: Advancing current practices at mission and nonmission sites within the Department of Energy: General LTS Practices

Other Contributors

Ron Kent Navarro Research and Engineering, Inc.

Nicole Gordon Navarro Research and Engineering, Inc. David Dander Navarro Research and Engineering, Inc.

Jalena Dayvault DOE Office of Legacy Management

Mill Tailings = Original Uranium Source

Monticello, Utah

Tailings Removed or Capped in Place

- Surface remediation
- Still have uranium plume

Tuba City, Arizona

Riverton, Wyoming

Current Uranium Plume

- Ongoing long-term surveillance (LTS) concern to laypeople
- Other contaminants too
- Uranium plume development depends on: 1) source, 2) underlying and downgradient material, and 3) geochemical reactions

Riverton, Wyoming: Uranium

Uranium Transport Fundamentals

- Generally mobile under oxidizing conditions
- But can precipitate with the right geochemistry
 - Carnotite (oxidizing with high vanadium)
 - Autinite (oxidizing with high phosphate)
- Can also precipitate (uraninite) under strongly reducing conditions
- Generally, complexes in groundwater that make uranium more mobile include:
 - Alkalinity (carbonate)
 - Calcium
 - Magnesium
 - Dissolved organic carbon
- Uranium likes to sorb to iron, clays, and organics under oxidizing or reducing conditions
- Key: geochemistry of the water AND the solid phase is important

Tailings

- If sulfide rich, produces low pH waters with sulfide oxidation, but may be buffered if ore had carbonates
- When open, lots of oxygen coming in
 - Oxidizing environment, mobile uranium, high sulfide-oxidation rates with release of iron and low pH waters, high flow rates to underlying aquifer
- Once covered, may not be much oxygen
 - Reducing environment, low sulfide oxidation, less uranium mobility if precipitation occurs, lower flow rates to underlying aquifer

Aquifer

- May have dissolved oxygen
- May have a good buffering capacity
- Geochemical reactions occur as groundwater mixes with tailings fluid
- Amount of mixing depends on aquifer and tailings fluid quantities

Uranium Plume Development

- Low pH keeps uranium and iron mobile
- Low pH is neutralized by calcite dissolution in tailings or aquifer material
- Calcite dissolution: adds CO₂, Ca, and alkalinity that keeps uranium mobile, but is balanced by iron precipitation, which depends on pH and oxidizing/reducing conditions (Eh/pH diagram, next slide)
- CO₂ degassing: if this occurs, then precipitate calcite, and uranium may be less mobile (different pH and less alkalinity)
- Precipitation of iron on the solid phase reduces uranium mobility (sorption) and becomes a subsequent uranium source zone below or away from the original tailings source
- Removing tailings does not equal full source removal
 - Can still have mill-related subpile solid phase contamination
 - Can still have mill-related groundwater contaminant plume

Key Communication Items for the Layperson

- Discuss how we got to current conditions
 - Source zone location
 - Groundwater flow direction
 - Plume development
- Going forward
 - Future plume movement and concentrations
 - Downgradient discharge or exposure points
 - Plans for LTS and/or active remediation
 - Ongoing source zone or not (key information, not always well known)
- Predictions rely on many factors, including: adequate site conceptual models, numerical simulations /trend analyses, and understanding of uranium geochemistry in the water and solid phases
- Predictions have uncertainty (like weather forecasts)

Communication Tools

- 3D graphics with
 - Real LTS data
 - Groundwater and solid phase concentrations
 - Presenter discussing geochemical complexities verbally
 - Future predictions
- Examples using 3D rendering software
 - Riverton geology, water table, and solid phase
 - Riverton with addition of plume
 - Naturita future plume movement based on trend analyses

Visit Stations

- Sand tank (David Dander)
- 3D graphics (Ron Kent)
- Posters (Nicole Gordon and Ray Johnson)

Open Discussion

- Other communication ideas?
- Level of complexity on uranium geochemistry?
- Balance of transparency versus communicating all the details?
- How to communicate uncertainty?