2018 Long-Term Stewardship Conference

Evaluating Vulnerability of Closed Uranium Mill Tailing Sites to Event-Triggered Surface Erosion

Jenny B. Chapman, Research Hydrogeologist Desert Research Institute

Track 1.5

Co-authors:

Steven N. Bacon, P.G., C.E.G. Julianne J. Miller

Associate Research Geomorphologist Research Hydrologist

Desert Research Institute Desert Research Institute

Acknowledgments: David Traub, Dick Johnson, Bill Dam

Challenges of Closed Uranium Mill Tailing Sites

Terrain Altering Events

Short Term:

- Mitigation actions
- Event monitoring
- Communication

Long-Term:

- Erosion concerns
- Changes in design basis
- Change in monitoring metrics
- Large-scale mitigation actions

Vulnerability Assessment Approach

- Evaluation-parameter rating scheme
- Based on similar process used for geologic hazard mapping (e.g., landslide risk)
 - Use intrinsic trigger parameters responsible for hazard

- ➤ Rate site characteristics (e.g., geomorphic, hydrologic, biologic) relevant to processes of concern
- ➤ Example here focuses on surface erosion susceptibility
- > Factors include:
 - Landform erosion potential
 - Saturated soil hydraulic conductivity
 - Percent slope
 - Watershed ruggedness

Erosion Susceptibility Factors

Landform Erosion Potential

- Identify landforms present in disposal site watershed (geomorphic map)
- Link landform to dominant surface process (weathering, mass wasting, surface water, groundwater, wind)
- Assign erosion potential based on processes
- Range from
 - o Negligible for undisturbed hillslopes
 - 5 Very High for debris slide slopes, gullies

Saturated Hydraulic Conductivity

- Account for differing ability of soils to infiltrate rainfall
- K_{sat} as a proxy for runoff potential
- Based on soil texture mapped by NRCS
- Range from
 - o Very Rapid for coarse sandy soils
 - 5 Very Slow for clay-rich soil and bedrock outcrops

Erosion Susceptibility Factors

Percent Slope

- Slope controls degree of erosion from surface runoff and propensity of mass-wasting on hillslopes
- Adapted slope steepness categories of Kelsey (1977)
- Calculated in a GIS using USGS 10-meter DEM
- Range from
 - o Negligible for o-5% slopes (o to 2.9°)
 - 5 Steep to Precipitous for slopes greater than 60% (31°)

Watershed Ruggedness

- Similar in concept to slope, but on a watershed scale
- Indicator of relative dynamism of the basin and hazards related to water movement and sediment mobilization
- Based on Melton Ruggedness Number (1965) dividing watershed relief by area
- Range from
 - o Very low relative relief
 - 5 Extreme relative relief

Edgemont Disposal Site

L-Bar Disposal Site

2018 LTS Conference

Factor: K_{sat}

Factor: Percent Slope

2018 LTS Conference

Factor: Watershed Ruggedness

Melton Ruggedness Number 0.07 Very Low class (factor rating = 0)

Melton Ruggedness Number 0.15 Low class (factor rating = 1)

Surface Erosion Susceptibility (SES)

 $SES Index = \frac{(Total number of cells with M, H, VH classes)}{(Total number of cells with N, VL, L classes)}$

SES Index = 0.46

SES Index = 1.67

Vulnerability Assessment Flowchart

Monitoring Implications

Focus on-ground monitoring on vulnerable site areas

Remote monitoring opportunities

- Context for terrain monitoring through time
- Develop site-specific inspection plans focused on high risk factors
- Preparedness for event based monitoring after fire and flood

Conclusions

- Landform-based approach to identifying vulnerable site areas
 - Easily repeatable and transferable process
 - Based on GIS platform and available datasets
 - Use to develop response plans for terrain altering events & guide long-term monitoring
- Framework for Intra- and Inter-site comparisons
 - Focus resources to address higher risk factors at each site
 - Focus resources to address overall higher risk sites
- Approach can be tailored by using or adding other data layers
 - Climate factors affecting erosion such as freeze/thaw
 - Dissection index (topographic crenulation)
 - Drainage network density including overland vs. channelized flows
 - Seismic hazards
 - Subsidence history
 - Vegetation cover
 - Precipitation intensity