Evaluating Vulnerability of Closed Uranium Mill Tailing Sites to Event-Triggered Surface Erosion

Jenny B. Chapman, Research Hydrogeologist
Desert Research Institute

Track 1.5
Co-authors:

Steven N. Bacon, P.G., C.E.G.
Associate Research Geomorphologist
Desert Research Institute

Julianne J. Miller
Research Hydrologist
Desert Research Institute

Acknowledgments: David Traub, Dick Johnson, Bill Dam
Challenges of Closed Uranium Mill Tailing Sites

- Large engineered structures
- Long compliance timeframes
- Active landscapes
- Extreme events will occur

Photo: NRC, 2015
Terrain Altering Events

Short Term:
- Mitigation actions
- Event monitoring
- Communication

Long-Term:
- Erosion concerns
- Changes in design basis
- Change in monitoring metrics
- Large-scale mitigation actions
Vulnerability Assessment Approach

• Evaluation-parameter rating scheme
• Based on similar process used for geologic hazard mapping (e.g., landslide risk)
 ▪ Use intrinsic trigger parameters responsible for hazard

- Rate site characteristics (e.g., geomorphic, hydrologic, biologic) relevant to processes of concern
- Example here focuses on surface erosion susceptibility
- Factors include:
 ▪ Landform erosion potential
 ▪ Saturated soil hydraulic conductivity
 ▪ Percent slope
 ▪ Watershed ruggedness
Erosion Susceptibility Factors

Landform Erosion Potential

- Identify landforms present in disposal site watershed (geomorphic map)
- Link landform to dominant surface process (weathering, mass wasting, surface water, groundwater, wind)
- Assign erosion potential based on processes
- Range from
 - 0 – Negligible for undisturbed hillslopes
 - 5 – Very High for debris slide slopes, gullies

Saturated Hydraulic Conductivity

- Account for differing ability of soils to infiltrate rainfall
- K_{sat} as a proxy for runoff potential
- Based on soil texture mapped by NRCS
- Range from
 - 0 – Very Rapid for coarse sandy soils
 - 5 – Very Slow for clay-rich soil and bedrock outcrops
Erosion Susceptibility Factors

Percent Slope

- Slope controls degree of erosion from surface runoff and propensity of mass-wasting on hillslopes
- Adapted slope steepness categories of Kelsey (1977)
- Calculated in a GIS using USGS 10-meter DEM
- Range from
 - 0 – Negligible for 0-5% slopes (0 to 2.9°)
 - 5 – Steep to Precipitous for slopes greater than 60% (31°)

Watershed Ruggedness

- Similar in concept to slope, but on a watershed scale
- Indicator of relative dynamism of the basin and hazards related to water movement and sediment mobilization
- Based on Melton Ruggedness Number (1965) dividing watershed relief by area
- Range from
 - 0 – Very low relative relief
 - 5 – Extreme relative relief
Edgemont Disposal Site

Legend
- Site Watershed Boundary
- Tailing Impoundment
- Rip Rap

North Drainage Outlet
Grass-lined Perimeter Channel
Southwest Drainage Outlet
Containment Dam
Outfall Basin

2018 LTS Conference
L-Bar Disposal Site

Legend:
- L-Bar Site Boundary
- Diversion Channel
- Flow Direction
- Rip Rap
- 2009 Erosion Control Structure

Scale:
- 0 500 1,000 2,000 Feet
- 0 150 300 600 Meters
Factor: Erosion Potential

Edgemont

L-Bar

2018 LTS Conference
Factor: K_{sat}

2018 LTS Conference
Factor: Percent Slope

2018 LTS Conference
Factor: Watershed Ruggedness

Melton Ruggedness Number 0.07
Very Low class (factor rating = 0)

L-Bar

Melton Ruggedness Number 0.15
Low class (factor rating = 1)
Surface Erosion Susceptibility (SES)

SES Index = \(\frac{(\text{Total number of cells with M, H, VH classes})}{(\text{Total number of cells with N, VL, L classes})} \)

SES Index = 0.46
SES Index = 1.67

2018 LTS Conference
Vulnerability Assessment Flowchart

CALCULATE WATERSHED SES INDEX

(Total number of cells with Moderate, High, and Very High classes)
(Total number of cells with Negligible, Very Low, and Low classes) = SES Index

SURFACE EROSION SUSCEPTIBILITY (SES) MAPS

Group into General SES Classes

Factor Ratings (3 – 15)

Input Data Layers (assign factor ratings)

Numerical Factor Rating Layers (0 – 5 classes)

10 m x 10 m Grid Cells

Sum Factor Ratings per Each Grid Cell

Surface Erosion Susceptibility Class

- Negligible
- Very Low
- Low
- Moderate
- High
- Very High
- Diaposable Site

Landform Erosion Potential

Percent Slope

Watershed Ruggedness

Hydraulic Conductivity (Ksat)

Geomorphology

Dem

NRCS Soils

Imagery
Monitoring Implications

Focus on-ground monitoring on vulnerable site areas

- Context for terrain monitoring through time
- Develop site-specific inspection plans focused on high risk factors
- Preparedness for event based monitoring after fire and flood

Remote monitoring opportunities

Photo: NRC, 2015

Photo: LM Program Update Q3 2016
Conclusions

• Landform-based approach to identifying vulnerable site areas
 ▪ Easily repeatable and transferable process
 ▪ Based on GIS platform and available datasets
 ▪ Use to develop response plans for terrain altering events & guide long-term monitoring

• Framework for Intra- and Inter-site comparisons
 ▪ Focus resources to address higher risk factors at each site
 ▪ Focus resources to address overall higher risk sites

• Approach can be tailored by using or adding other data layers
 ▪ Climate factors affecting erosion such as freeze/thaw
 ▪ Dissection index (topographic crenulation)
 ▪ Drainage network density including overland vs. channelized flows
 ▪ Seismic hazards
 ▪ Subsidence history
 ▪ Vegetation cover
 ▪ Precipitation intensity