

Powertrain Electrification and Fuel Cell R&D

Power of Choice

Tim Frazier Cummins Research & Technology

July 31, 2018

H2@Scale End Use Applications for Truck

Cummins Powers a Broad Range of Applications with Diverse Requirements

- The world's largest independent engine manufacturer
- Global manufacturing
- Broadest and most capable distribution and customer support network
- Powering more types of equipment in more markets than any other engine company

Common Requirements	
Fuel Efficient	Low Cost
High Power Density	Quick Start
Transient Operation	Durability

CHANGING GROWTH DRIVERS

Commercial Vehicle Applications "Powertrain of Choice"

Benefits of PEM Fuel Cells

Zero carbon, zero emissions (compared to conventional fuels)

High energy density (compared to battery)

Quick refueling (compared to battery)

Improving performance & durability

Immediate startup (compared to SOFC)

Transient response (compared to SOFC)

Improving cost of operation

Key Drivers for Adoption of Technology

Cost of Operation Model Transient Bus Example

- At today's price of hydrogen (~\$10/kg) and PEMFC system (\$1000/kW), total cost of operation (TCO) are not justified
- At DOE targets (\$50/kW and \$2-3 kg/ H2), TCO could be better than EV

Key elements in ecosystem

- 1. Electricity / Natural Gas price
- 2. Electrolysis / SMR equipment
- 3. H2 & O2 distribution
 - 4. PEMFC system & on-board storage

Building Capabilities Across the Value Chain

