Appendix H Substation Geotechnical and Subsurface Exploration Report

December 22, 2016

Dave Karpinski Lake Erie Energy Development Corporation (LEEDCo) 1938 Euclid Avenue, Suite 200 Cleveland, Ohio 44115

RE: Geotechnical and Subsurface Exploration Report for the Proposed Electrical Substation for the Icebreaker Offshore Wind Demonstration Project, Cleveland, Ohio; LAE001.600.0005.

Dear Mr. Karpinski:

Hull & Associates, Inc. (Hull) is pleased to present the attached Geotechnical and Subsurface Exploration Report (Report) for the proposed electrical substation for the Icebreaker Offshore Wind Demonstration Project located at the Cleveland Public Power Facility on North Marginal Road in Cleveland, Ohio (Site). The work was performed by Hull as requested by LEEDCo in accordance with Hull's revised proposal (Hull document #LAE001.100.0002) dated September 17, 2016 and the subsequent authorization to proceed. This Report summarizes our understanding of the proposed construction, describes the drilling and testing procedures, discusses our observations of subsurface conditions, and presents the findings and recommendations as it relates to foundation design and earthwork construction for the planned project. The Report also incorporates the information shared during a design review meeting with Middough Inc. on December 8, 2016. Attached is the Report as a PDF electronic file being provided via email for your distribution.

Soil samples collected during this exploration will be stored at our material testing laboratory for 90 days from the date of this Report, unless directed otherwise by you.

Please do not hesitate to contact Shawn McGee with any questions or comments you may have regarding the Report at (440) 232-9945.

Sincerely,

E-t PHOLESSIONAL C (w/Attor tachme Daniel R. Pratt Engineer II Shawn D. McGee, P.E. **Geotechnical Practice Leader** Attachment

Tom McNeilan, McNeilan & Associates, LLC (w/Attachments) cc: Yacoub Kordahi, P.E., Middough Inc. (w/Attachments)

GEOTECHNICAL AND SUBSURFACE EXPLORATION REPORT

FOR THE: PROPOSED ELECTRICAL SUBSTATION FOR THE ICEBREAKER OFFSHORE WIND DEMONSTRATION

> LOCATED AT: CLEVELAND PUBLIC POWER SITE NORTH MARGINAL ROAD CLEVELAND, CUYAHOGA COUNTY, OHIO

PREPARED FOR: LAKE ERIE ENERGY DEVELOPMENT CORPORATION 1938 EUCLID AVENUE, SUITE 200 CLEVELAND, OHIO 44115

> PREPARED BY: HULL & ASSOCIATES, INC. 4 HEMISPHWERE WAY BEDFORD, OHIO 44146

> > **DECEMBER 22, 2016**

TABLE OF CONTENTS

DESCRIPTION OF SITE. 2.1 Site Location. 2.2 Site Topography, Drainage and Surface Features 2.3 General Area Geology 2.4 Electromagnetic (EM) Induction Profiling and Ground-penetrating Radar (GPR) Survey FIELD EXPLORATION AND LABORATORY TESTING PROGRAM 3.1 Field Exploration. 3.2 Geotechnical Laboratory Testing Program. 3.3 Geoenvironmental Sampling and Testing. EXPLORATION FINDINGS.	DESCI		
2.2 Site Topography, Drainage and Surface Features 2.3 General Area Geology 2.4 Electromagnetic (EM) Induction Profiling and Ground-penetrating Radar (GPR) Survey FIELD EXPLORATION AND LABORATORY TESTING PROGRAM. 3.1 Field Exploration. 3.2 Geotechnical Laboratory Testing Program. 3.3 Geoenvironmental Sampling and Testing. EXPLORATION FINDINGS. 4.1 General Subsurface Conditions 4.2 Groundwater Observations. FOUNDATION DISCUSSION AND RECOMMENDATIONS 5.1 Project Description 5.2 Foundation Recommendations 5.2.1 Transformer and SWGR Metal Building		RIPTION OF SITE	
2.2 Site Topography, Drainage and Surface Features 2.3 General Area Geology 2.4 Electromagnetic (EM) Induction Profiling and Ground-penetrating Radar (GPR) Survey FIELD EXPLORATION AND LABORATORY TESTING PROGRAM. 3.1 Field Exploration. 3.2 Geotechnical Laboratory Testing Program. 3.3 Geoenvironmental Sampling and Testing. EXPLORATION FINDINGS. 4.1 General Subsurface Conditions 4.2 Groundwater Observations. FOUNDATION DISCUSSION AND RECOMMENDATIONS 5.1 Project Description 5.2 Foundation Recommendations 5.2.1 Transformer and SWGR Metal Building	2.1	Site Location	
2.3 General Area Geology 2.4 Electromagnetic (EM) Induction Profiling and Ground-penetrating Radar (GPR) Survey FIELD EXPLORATION AND LABORATORY TESTING PROGRAM 3.1 Field Exploration 3.2 Geotechnical Laboratory Testing Program 3.3 Geotechnical Laboratory Testing Program 3.3 Geotechnical Laboratory Testing Program 3.3 Geotechnical Laboratory Testing Program 4.1 General Subsurface Conditions 4.2 Groundwater Observations 4.2 Groundwater Observations 5.1 Project Description 5.2 Foundation Recommendations 5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles 5.3 Comparison of COCs to Applicable Standards CONSTRUCTION CONSIDERATIONS 6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control.		Site Topography, Drainage and Surface Features	
2.4 Electromagnetic (EM) Induction Profiling and Ground-penetrating Radar (GPR) Survey FIELD EXPLORATION AND LABORATORY TESTING PROGRAM 3.1 Field Exploration	2.3		
3.1 Field Exploration		Electromagnetic (EM) Induction Profiling and Ground-penetrating Radar (<u>GPR) Survey</u>
3.2 Geotechnical Laboratory Testing Program 3.3 Geoenvironmental Sampling and Testing. EXPLORATION FINDINGS. 4.1 General Subsurface Conditions 4.2 Groundwater Observations. FOUNDATION DISCUSSION AND RECOMMENDATIONS 5.1 Project Description 5.2 Foundation Recommendations 5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles 5.3 Comparison of COCs to Applicable Standards CONSTRUCTION CONSIDERATIONS 6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations	FIELD	EXPLORATION AND LABORATORY TESTING PROGRAM	
3.3 Geoenvironmental Sampling and Testing	3.1		
3.3 Geoenvironmental Sampling and Testing. EXPLORATION FINDINGS. 4.1 General Subsurface Conditions 4.2 Groundwater Observations. FOUNDATION DISCUSSION AND RECOMMENDATIONS 5.1 Project Description 5.2 Foundation Recommendations 5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles 5.3 Comparison of COCs to Applicable Standards CONSTRUCTION CONSIDERATIONS 6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations	3.2	Geotechnical Laboratory Testing Program	
4.1 General Subsurface Conditions 4.2 Groundwater Observations FOUNDATION DISCUSSION AND RECOMMENDATIONS 5.1 Project Description 5.2 Foundation Recommendations 5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles 5.3 Comparison of COCs to Applicable Standards CONSTRUCTION CONSIDERATIONS 6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations	<u>3.3</u>		
4.2 Groundwater Observations. FOUNDATION DISCUSSION AND RECOMMENDATIONS 5.1 Project Description. 5.2 Foundation Recommendations 5.2 Foundation Recommendations 5.2.1 Transformer and SWGR Metal Building. 5.2.2 Poles 5.3 Comparison of COCs to Applicable Standards CONSTRUCTION CONSIDERATIONS 6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control. 6.7 Excavations	EXPLO	DRATION FINDINGS	
FOUNDATION DISCUSSION AND RECOMMENDATIONS 5.1 Project Description	4.1		
5.1 Project Description 5.2 Foundation Recommendations 5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles 5.3 Comparison of COCs to Applicable Standards CONSTRUCTION CONSIDERATIONS 6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control	4.2	Groundwater Observations	
5.2.2 Poles 5.3 Comparison of COCs to Applicable Standards CONSTRUCTION CONSIDERATIONS 6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations		Project Description	
5.2.2 Poles 5.3 Comparison of COCs to Applicable Standards CONSTRUCTION CONSIDERATIONS 6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations		Foundation Recommendations	
6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations			
6.1 Site Preparation and Compaction Requirements 6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations		5.2.1 Transformer and SWGR Metal Building	1.
6.2 Proof Rolling 6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations	<u>5.3</u>	5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles	
6.3 Removal of Existing Foundations 6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations		5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles Comparison of COCs to Applicable Standards	
6.4 Pavement Considerations 6.5 Drainage 6.6 Groundwater Control 6.7 Excavations	CONS 6.1	5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles <u>Comparison of COCs to Applicable Standards</u> TRUCTION CONSIDERATIONS <u>Site Preparation and Compaction Requirements</u>	
6.5 Drainage 6.6 Groundwater Control 6.7 Excavations	CONS 6.1	5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles <u>Comparison of COCs to Applicable Standards</u> TRUCTION CONSIDERATIONS <u>Site Preparation and Compaction Requirements</u>	
6.6 Groundwater Control. 6.7 Excavations	CONS <u>6.1</u> <u>6.2</u>	5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles Comparison of COCs to Applicable Standards TRUCTION CONSIDERATIONS Site Preparation and Compaction Requirements Proof Rolling	
6.7 Excavations	CONS <u>6.1</u> <u>6.2</u> <u>6.3</u>	5.2.1 Transformer and SWGR Metal Building 5.2.2 Poles Comparison of COCs to Applicable Standards	1
	<u>6.1</u> <u>6.2</u> <u>6.3</u> <u>6.4</u>	5.2.1 Transformer and SWGR Metal Building	1
6.8 Geotechnical Related Construction Observation and Testing	<u>6.1</u> <u>6.2</u> <u>6.3</u> <u>6.4</u> <u>6.5</u> <u>6.6</u>	5.2.1 Transformer and SWGR Metal Building	1 1 1 1 1 1 1 1 1 1 1 1 1 1
	<u>6.1</u> <u>6.2</u> <u>6.3</u> <u>6.4</u> <u>6.5</u> <u>6.6</u>	5.2.1 Transformer and SWGR Metal Building	1 1 1 1 1 2 <td< td=""></td<>

TABLE OF CONTENTS CONT'D

LIST OF FIGURES

Figure 1 Site Location Map

LIST OF APPENDICES

- Appendix A Site Plan and Boring Location Maps
- Appendix BGeneral Information, Drilling Procedures and Logs of BoringsDefinition of Terms Used to Describe Subsurface Materials on Boring LogsBoring Logs 16 Sample Borings and 6 Auger Borings
- Appendix C Geotechnical Laboratory Testing Results
- Appendix C-1 Index Testing (Grain Size Analysis and Plasticity Characteristics)
- Appendix C-2 Unconsolidated Undrained Triaxial Compressive Strength Test Results
- Appendix C-3 One-Dimensional Consolidation Test Results
- Appendix D Laboratory Analytical Data
- Appendix E Report of Geophysical Surveys (prepared by Grumman Exploration, Inc.; dated October 28, 2016)

1.0 INTRODUCTION

An exploration and evaluation of the geotechnical and geoenvironmental conditions have been made for the proposed electrical substation for the Icebreaker Offshore Wind Demonstration Project located at the Cleveland Public Power (CPP) Facility on North Marginal Road in Cleveland, Ohio (Site). This proposed development will consist of equipment, power poles, and lightly loaded buildings to support operations of the electrical substation during the project. The exploration presented in this Report has been performed as requested by the Lake Erie Energy Development Corporation (LEEDCo) in accordance with Hull's revised proposal (Hull document #LAE001.100.0002) dated September 17, 2016 and the subsequent authorization to proceed.

The project includes the installation of six 3-Megawatt wind turbine generators (WTGs) offshore from the former CPP and beyond the breakwaters. Energy generated from the WTGs will be transmitted through cables, which will be installed beneath the harbor with horizontal directional drilling (HDD) techniques, to a new substation to be located at the CPP facility. The substation will include the construction of a 138 kV Interconnect facilities and switchyard area, both approximately 120 feet by 60 feet in size. The project will also include a HDD entry pit. We understand that LEEDCo is currently considering two locations and HDD orientations.

The purpose of this exploration was to: 1) determine the subsurface conditions to the depths of the borings, 2) evaluate the engineering characteristics of the subsurface materials, 3) provide information to assist in designing the foundations of the anticipated structures (by others), 4) provide stratigraphic information of the lacustrine deposits for planning of HDD, and 5) present general earthwork recommendations for construction. A geotechnical engineer has planned and supervised the performance of the geotechnical engineering services, has considered the findings, and has prepared this Report in accordance with generally accepted geotechnical engineering practices. This Report was prepared solely for the use of LEEDCo and their assigns for the specific purposes mentioned above. No other warranties, either expressed or implied, are made as to the professional advice included in this Report.

It is understood that previous borings completed at the Site in the mid 2000s encountered coal ash and soil fill that extended 12 to 14 feet BGS with groundwater recorded at 12 feet BGS, similar to lake levels. The borings completed by Hull will obtain a better understanding of the previous filling activities (e.g., type of fill, approximate vertical/lateral extents, consistency/density, etc.) in the development areas and provide basic information relative to potential construction and development constraints, including their suitability for initiating a HDD bore from the Site and the possible presence of rubble or other obstructions. In addition, Hull advanced borings on the nearby Cleveland Confined Disposal Facility (CDF12) in proximity to the

proposed HDD alignment for the purpose of providing stratigraphic information within the lacustrine deposits underlying the CDF for HDD planning purposes.

During this phase of the project, Hull also completed a limited (Geoenvironmental) Environmental Review (ER) and also coordinated a non-intrusive geophysical exploration using Electromagnetic (EM) Induction profiling and targeted Ground-penetrating Radar (GPR) technology at the Site. The Geoenvironmental ER consisted of a desktop study for the purpose of obtaining information related to potential environmental and/or geotechnical concerns as a result of previous operations or activities at the Site. Hull subcontracted a firm specializing in Geophysical Surveys to conduct an EM/GPR survey over targeted areas based on the proposed layout at the Site to locate interpreted conductive/metallic targets or other anomalous responses.

A conceptual Site layout map showing the location of the proposed equipment layout and general structural loads was available for our use (see site plans in Attachment A). A 90% Design Review Plan Set, which included a site grading plan and general construction specifications were available to Hull to finalize this Report. It is understood that minimal cut/fills, other than excavations needed to remove existing foundation systems or for the new equipment footings, will be required to achieve planned final grades.

Any revision in the plans for the proposed structures from those enumerated in this Report should be brought to the attention of Hull so it may be determined if changes in the foundation or earthwork recommendations are required. If additional data are needed for design purposes or deviations from the noted subsurface conditions are encountered during construction, they should also be brought immediately to the attention of Hull. It is recommended that Hull be provided the opportunity to review the final design and specifications prior to construction so the earthwork and foundation recommendations may be properly interpreted and implemented. At that time, it may be necessary to submit supplementary recommendations.

2.0 DESCRIPTION OF SITE

2.1 Site Location

The Site is located at the Cleveland Public Power Site on North Marginal Road in the City of Cleveland, Cuyahoga County, Ohio. The Site is bounded to the north and east by Lake Erie, to the west by a private yacht club, and to the south by North Marginal Road. Figure 1 is a USGS site location map.

2.2 Site Topography, Drainage, and Surface Features

The Site, including the existing electrical substation area, consists of an approximate 3-acre gravel lot that is uniformly flat with no discernable geomorphic features. Established vegetation is absent with the exception of trees and brush along the water's edge. There are no drainage structures, such as catch basins and storm sewers, present at the Site. Based on a review of available topography for the Site, storm water runoff appears to generally flow north towards the Lake.

It should be noted that the CPP site is a former submerged area of Lake Erie where manmade fill was placed to create land along the former shoreline and to achieve current grades. The City does not have records of the source or origin of the fill, or how/if the fill was placed and compacted. This Report does give a description of the material type in later sections.

2.3 General Area Geology

Geological references report that the Site is currently relatively flat terrain located within the physiographic region of the Erie Lake Plain, and is comprised of lacustrine deposits and glacial drift. The Wisconsin glacier passed over the region. Glacial drift consists of varying amounts of gravel, sand, silt and clay. The Lake Plains region and the Cuyahoga River valley, lacustrine (lake bottom) silt and clay deposits overlie the glacial till. Where erosion stripped away the till, the lacustrine deposits may rest directly on bedrock. Lacustrine deposits were formed when surface water runoff washed fine grained sediments into lakes that covered parts of Cuyahoga County during or immediately after the last period of glaciation. Over time, the silt and clay settled to the bottom of the lakes and accumulated into thick layers. Bedrock underlying the unconsolidated material beneath the Site is Devonian Age Ohio Shale and is reported to be several hundred feet below ground surface (BGS) based on a review of Glacial and Surficial Geology of Cuyahoga County, Ohio maps prepared by the Division of Geological Survey for the project area.

2.4 Electromagnetic (EM) Induction Profiling and Ground-penetrating Radar (GPR) Survey

Grumman Exploration, Inc. conducted Electromagnetic (EM) induction profiling and Ground-penetrating radar (GPR) surveys within the Icebreaker Substation and the CPP 138 kV Ring Bus Extension Areas on October 7, 2014. The approach to the EM profiling and GPR survey was as follows:

- The EM Induction Profiling survey was performed using a GSSI GEM-300 multi-frequency • EM induction profiling system. This EM technique is commonly used for effectively locating large subsurface metallic targets (e.g., USTs, barrels, foundations, metallic objects, conductive buried waste and fill limits, some utility lines, geologic features, and occasionally aroundwater containment plumes) in situations where GPR is ineffective. Vertical dipole guadrature phase (proportional to inductionconductivity) and in-phase (metal-sensitive) measurements using a single coil alignment at three frequencies (15,030Hz and 9,810 Hz and 4,410 Hz) were recorded electronically at each grid location. The gridded EM survey was limited to the open, accessible portions of the southern, eastern and western regions of the Site. The transect spacing was 5-ft and the in-line measurement interval was \sim 2.2-ft. A "continuous survey" mode was used. In this survey mode, data are acquired at a fixed time interval while the operator walks along a survey line at a steady pace. Regularly spaced reference marks were incorporated into the data during acquisition to "fix" the measurement locations. Subsequently, a computer program was used to adjust the station positions with respect to the coordinate system being used.
- GPR scans were also performed in targeted areas of the site, and mainly over anomalous EM targets and in the northern sector of the east parcel. The GPR system used was a GSSI SIR-3000 in conjunction with a 270 MHz dipole antenna. This antenna was selected for its greater depth penetration compared to that of the 400 MHz antenna. The first field task involved equipment setup and the completion of several test scans to observe the GPR response and to adjust the data acquisition parameters. A survey wheel was used to acquire distance-based data at the density of approximately 10.0 GPR traces per foot. GPR scans were performed along 5-ft spaced east-west and north-south transects in both investigation areas as access and ground surface conditions allowed. The time window used was 80 nanoseconds (ns) and band-pass filters were applied to reduce extraneous interference. Preliminary interpretations regarding the possible presence of excavations and anomalous buried structures and objects were made as the GPR data were acquired. The data was recorded electronically on an internal hard disk in the field and later transferred to a desktop PC computer and computer workstation for subsequent processing, display and analysis

The investigation areas were located within an active public utility service yard area covered with gravel at the ground surface. An approximate 202-ft by 43-ft concrete containment slab is located in the center of the yard. There were many obstructions and sources of electrical interference within both investigation areas, including: electrical transformers, utility boxes, debris piles, concrete vaults, a dumpster, soil and fill piles, various stored equipment, debris piles, steel superstructure and foundations related to an overhead coal loading chute and conveyors, a brick electrical building and loading dock, and areas with dense vegetation. Additionally, trial directional borings were conducted in the lcebreaker Substation area at the same time as the geophysical investigation.

In summary, anomalous strong EM responses were observed in a few locations within the investigation areas. These responses are believed to indicate buried metallic structures, demolition debris and/or possibly industrial fill, such as slag. The GPR results show strong reflective targets in the switchgear area what may indicate reinforced concrete structures. This information was used to target areas and zones during the drilling. Specific targets or conditions of interest in the two investigation areas are summarized below:

CPP 138 kV Ring Bus Extension

Anomalous EM in-phase and GPR responses were noted in three general locations within the CPP 138 kV Ring Bus Extension area, including:

- O-ft to 15-ft N/ 20-ft to 30-ft+ W: west of concrete pad (see Figure 2 in Appendix E) Possible interpretations of this zone include a more deeply buried reinforced concrete pad, metal equipment or a concentration of metallic debris. There was no corresponding EM conductivity response over this target which may indicate that the target is metallic. GPR scans over the EM anomaly show no clear indication of a buried structure, although the cause of the EM response may be too deep to detect using GPR.
- 20-ft to 45-ft W/ 5-ft to 40-ft N: west-central end of the concrete containment pad Erratic strong EM in-phase responses were observed between the obstructions on the pad. Some of the strong EM responses may be interference effects caused by nearby metallic obstructions. GPR scans over the southern portion of this area (see Figure 3 in Appendix E) show strong reflective objects or structures buried a few feet below the slab surface. It is not clear what the reflective objects are and the lateral extent of this area and outline of the targets could not be determined because of the limited working area. A possible explanation is that the targets are large fragments of reinforced concrete or stone (e.g. rip-rap). Deeper, chaotic GPR reflections were observed over the reflective targets which may indicate coarse demolition debris.
- 10-ft to 50-ft E/ 25-ft to 40-ft S: west of brick building anomalous strong reflective surfaces were
 observed in the shallow subsurface region west of the brick building. No corresponding EM
 responses were noted over this region. The reflective targets appear to be on the order of 1-ft to
 2-ft below the ground surface. These reflective surfaces may indicate large fragments of concrete
 debris, former foundations, former support structures/flooring, or large pieces of stone.

Icebreaker Substation

Relatively few anomalous EM or GPR responses were observed within the HDD & Interconnect areas, although large portions of this area were obstructed and could not be scanned. The significant observations from this area include:

- 140-ft to 175-ft E/10-ft to 20-ft S: Vicinity of dumpster, south of containment pad An anomalous strong EM in-phase response was observed in the driveway area. No corresponding EM conductivity response was observed over this area. Possible explanations for this response include a more deeply buried reinforced concrete pad or other metallic structure. It is also considered possible that the response is an interference effect caused by the nearby dumpster and other metallic equipment. No indication of a reflective target was noted on GPR scans over this target (see Figure 4 in Appendix E).
- 180-ft to 250-ft E/35-ft to 90-ft N: far northeast (northern) corner of service yard Strong EM conductivity and strong, negative EM in-phase responses were observed across the northeast corner of the HDD/Interconnect area. A strong negative EM in-phase response is often observed over

regions with deeper, highly conductive industrial fill such as slag, cinders, or fill material with elevated iron or salt content. These types of materials are commonly observed throughout the Cleveland metro area. The increasingly negative response moving to the northeast may indicate that the highly conductive fill increases in thickness or concentration moving toward Lake Erie. No anomalous GPR responses were noted over this area, however the possible highly conductive fill would tend to severely reduce the effective GPR exploration depth over this area.

Additional information and more detailed findings from the EM profile and GPR survey activities are provided in the Geophysical Survey Report (prepared by Grumman Exploration, Inc.) in Appendix E.

3.0 FIELD EXPLORATION AND LABORATORY TESTING PROGRAM

3.1 Field Exploration

The field exploration included a reconnaissance of the Site, drilling sixteen (16) standard sampled borings for the proposed project, advancing six (6) auger borings, performing Standard Penetration Tests (SPT), recovering split-spoon and Shelby tube samples for laboratory analysis, and performing visual-manual examination of the soil samples retained. Eight of the borings were drilled within the Icebreaker Substation area and where the HDD entry pit will be located, six were located within the CPP 138 kV Ring Bus Extension area, and two were located on the Port of Cleveland's Confined Disposal Facility 12 (CDF12) along the proposed HDD alignment. The six auger borings were located within the HDD pit location of the lcebreaker Substation area to determine if subsurface debris, oversized materials, or other obstructions are present within the HDD entry pit area along the proposed profiles. The borings were advanced via a Central Mine Equipment Company (CME) LC55 all-terrain track-mounted drill rig operated by HAD Inc. of Rittman, Ohio. Samples on the CPP site were generally obtained from within the borehole at intervals of 2 $\frac{1}{2}$ feet within the upper 10 feet and then at 5 feet intervals to the borings' termination depth. The borings on CDF12 were straight augered (no sampling) to a depth of 40 feet below lake level (i.e., 60 to 75 feet BGS), at which time conventional split spoon sampling and Shelby tubes were alternated at 5- to 10-foot intervals to a depth of 90 feet below the lake water level (i.e., 120 feet BGS). Split-barrel samples were collected by the Standard Penetration Test Method (ASTM D1586).

The borings were completed between October 17 and 28, 2016 under the direction of a geologist from Hull at locations pre-determined by LEEDCo's project manager, McNeilan & Associates, LLC, and concurred with by Hull based on the proposed development conceptual layout. Hull had to field adjust some of the originally planned locations to avoid overhead electrical lines and potential underground obstructions. The boring locations were staked in the field by Hull using a hand-held GPS unit utilizing sub-foot accuracy as shown on the boring location site plan (see Appendix A). The location and ground surface elevation of the "as-drilled" borings were not surveyed, but available topographic information indicates that the CPP Site area is relatively flat and has an elevation difference across the Site of approximately 3 feet – the leebreaker Substation area has the lowest elevation of approximately 581 feet (vertical datum NAVD 1988) with the higher elevation near CPP 138 kV Ring Bus Extension area of approximately 584 feet. The borings located within CDF12 (BH-14 and 16) were at approximate elevations of 585 and 579 feet, respectively.

Table 1 summarizes the coordinates, existing ground surface elevations, thickness of the fill, and termination depths at each boring location. The soil borings were immediately backfilled with drill cuttings and bentonite upon completion of drilling.

Devine		Boring	Locations	Elevation of	Thickness	Termination
Boring Number	Boring Type	Latitude	Longitude	Existing Ground Surface ¹	of Fill (ft. BGS²)	Depth (ft. BGS ²)
BH-1	Switchyard Area and HDD Entry Pit	41.527152	-81.661831	581	33.5	100
BH-2	Switchyard Area and HDD Entry Pit	41.527080	-81.661755	581	<u>></u> 24.2	24.2
BH-3	Switchyard Area and HDD Entry Pit	41.527091	-81.661869	581	33.5	60
BH-4	Switchyard Area and HDD Entry Pit	41.526981	-81.661705	582	<u>></u> 30	30
BH-5	Switchyard Area and HDD Entry Pit	41.526988	-81.661845	582	<u>></u> 30	30
BH-6	Switchyard Area and HDD Entry Pit	41.527040	-81.661939	582	<u>></u> 28.5	28.5
BH-7	Switchyard Area and HDD Entry Pit	41.527024	-81.662058	582	<u>></u> 30	30
BH-8	Switchyard Area and HDD Entry Pit	41.526915	-81.661903	582	33.5	40
BH-9	138 kV Interconnect Area	41.526649	-81.662217	582	28.5	45
BH-10	138 kV Interconnect Area	41.526479	-81.662153	584	33.5	35
BH-11	138 kV Interconnect Area	41.526532	-81.662336	582	29	45
BH-12	138 kV Interconnect Area	41.526476	-81.662534	583	33.5	45
BH-13	138 kV Interconnect Area	41.526332	-81.662405	584	33.5	35
BH-14	CDF12	41.530286	-81.664148	585	N/A	120
BH-15	138 kV Interconnect Area	41.526088	-81.662793	584	35	40
BH-16	CDF12	41.528959	-81.663189	579	N/A	1215
AB-1 ³	Auger Boring	41.527109	-81.661864	581	<u>></u> 7	7
AB-2 ³	Auger Boring	41.527080	-81.661847	581	<u>></u> 20	20
AB-3 ³	Auger Boring	41.527071	-81.661809	581	<u>></u> 23	23
AB-4 ³	Auger Boring	41.527100	-81.661798	581	<u>></u> 25	25
AB-5 ³	Auger Boring	41.527043	-81.661782	581	<u>></u> 25	25
AB-6 ³	Auger Borings	41.527013	-81.661747	581	~35	35

Table 1 - Summary of Borings

 Elevations for borings are approximate and were interpolated from the field topographic field survey performed by KS Associates in August 2016 – the elevations are rounded to the nearest foot. The vertical datum for the borings performed at the CPP Site are NAVD 1988. The vertical datum for the borings at CDF12 are IGLD 1985.

2. BGS = below existing ground surface

3. Borings not samples, consequently, fill depths are approximate based on observations from drill cuttings. Borings AR-1, AR-3, AR-4 and AR-5 achieved auger refusal/obstructions prior to reaching the planned depth.

Refer to the boring logs in Attachment B for more detailed descriptions of subsurface units, sample data, SPT results, groundwater conditions, pocket penetrometer test results, and other pertinent information. See the maps in Appendix A that illustrates the locations of the "as drilled" borings.

3.2 Geotechnical Laboratory Testing Program

All samples were examined by a geotechnical engineer from Hull and described based on the visual-manual examination (ASTM D 2488) soil classification system. In addition, select samples were sent to Resource International, Inc. geotechnical testing laboratory in Cleveland, Ohio and subjected to grain-size analyses (ASTM D422), moisture content determinations (ASTM D2216), and Atterberg limits tests (ASTM D4318). In addition, the relatively undisturbed samples procured with Shelby tubes were subject to Unconsolidated Undrained Triaxial Compression (ASTM D2850) and One-Dimensional Consolidation (ASTM D2435) tests to determine shear strength and settlement/compression properties for the HDD design and planning (by others).

Laboratory testing indicated that the split spoon samples tested on the fill material at the CPP Facility was classified as silty sand with gravel (SM), poorly graded sand with gravel (SP), and well graded gravel with sand (GW) under the Unified Soil Classification System (USCS). Atterberg limit testing indicated that split spoon samples tested were non-plastic, expect for one sample in boring BH-9 (8.5-10 feet BGS) which had a liquid limit of 35 and plasticity index of 14 – suggesting that localized zones of clayey soil may be present within the fill. Moisture contents as received by the laboratory were also completed for select samples from within the fill and ranged from 9.0 to 41.7 percent. Similarly, laboratory testing indicated that the split spoon and Shelby tube samples tested on the underlying lacustrine deposit at the CPP Facility and beneath the CDF12 were relatively consistent, and was classified as lean clay (CL), lean clay with sand (CL), and well graded sand with silt (SW-WM) under the USCS. Atterberg limit testing indicated that clayey samples had liquid limits that ranged from 27 to 47, and plasticity indices that ranged from 8 to 24. Moisture contents as received by the laboratory were also complete form 8 to 24. Moisture contents as received by the laboratory were also completed form 8 to 24. Moisture contents as received by the laboratory were also completed for 8 to 24. Moisture contents as received by the laboratory were also completed for select lacustrine samples and ranged from 11.4 to 57.0 percent.

Ten (10) unconsolidated undrained (UU) triaxial compression tests (ASTM D2850) were performed on relatively undisturbed (Shelby tube) samples collected within several of the soil borings within the lacustrine deposit to determine the "undrained" shear strengths of the material. The tests were performed at specific effective confining stresses (cell pressures) ranging from27.8 to 104.2 pounds per square inch (psi), which represent the approximate stresses at the sample depth. The shear stresses ranged from 131 to 1,302 pounds per square feet (psf). There does not seem to be a trend with the shear strength of the lacustrine material with depth. Table 2 provides the shear strength results.

Boring Number	Sample Number	Depth	Sample Description	USCS1	LL ²	PL ²	Pl ²	LI2	Moisture Content	Effective Confining Stress PSI (psf)	Shear Stress (psf)
BH-1	ST-2	50.9- 51.4	Gray lean CLAY, tr. coarse to fine sand	CL	35	18	1 <i>7</i>	0.52	26.9%	45.2 (6,508)	1,162
BH-1	ST-3	71.1- 71.6	Gray lean CLAY, tr. fine sand	CL	38	18	20	0.51	28.1	60.8 (8,755)	1,302
BH-3	ST-1	36.5- 37.0	Gray lean CLAY, tr. coarse to fine sand	CL	27	19	8	1.78	33.2	27.8 (4,003)	131
BH-3	ST-2	41.3- 41.8	Gray silty CLAY, tr. coarse to fine sand	CL-ML				N/A	29.2	31.3 (4,507)	174
BH-3	ST-4	55.8- 56.3	Gray lean CLAY, tr. fine sand	CL	27	17	10	0.93	26.3	48.6 (6,998)	993
BH-14	ST-1	110.8- 111.3	Gray lean CLAY, tr. coarse to fine sand	CL	41	21	20	0.41	29.2	93.8 (13,507)	1,055
BH-14	ST-2	119.0- 119.6	Gray lean CLAY, tr. coarse to fine sand	CL	37	20	17	0.42	27.2	104.2 (15,004)	471
BH-16	ST-2	76.0- 76.5	Gray lean CLAY, tr. coarse to fine sand	CL	35	17	18	0.76	30.6	62.5 (9,000)	382
BH-16	ST-4	96.0- 96.5	Gray lean CLAY, tr. coarse to fine sand	CL	39	22	17	0.56	31.6	82.6 (11,894)	470
BH-16	ST-6	116.4- 116.9	Gray lean CLAY, tr. coarse to fine sand	CL	38	19	19	0.36	25.8	100.7 (14,500)	379

Table 2 – Unconsolidated Undrained Triaxial Test Summary

1. Based on visual identification.

2. LL=liquid limit; PL=plastic limit; PI=plasticity index; LI=liquidity index

One-dimensional consolidation testing (ASTM D2435) was also performed on select Shelby tube samples collected within the underlying lacustrine deposits to determine settlement characteristics of the compressible material underlying the Site for use in HDD planning. Table 3 provides the results of the consolidation testing.

Settlement Parameters	BH-1 / ST-1 (40-42 ft BGS)	BH-3 / ST-3 (45-47 ft BGS)	BH-16 / ST-1 (65-67 ft BGS)	BH-16 / ST-5 (105-107 ft BGS)
Water Content (%) (w)	34.6	32.5	25.3	31.7
Dry Density (pcf) (yd)	85.8	94.1	93.8	90.4
Saturated Density (pcf) (γ _{sat})	117.7	123.0	121.3	119.3
Effective Overburden Pressure (psf) (σ_{vo} ')	2,183	2,650	3,790	5,528
Specific Gravity	2.71	2.70	2.70	2.67
In-situ Void Ratio (e)	0.974	0.790	0.797	0.844
Pre-consolidation Pressure (psf) (σ _p ')	2,409	4,425	6,322	3,346
Compression Index (C _c)	0.300	0.258	0.197	0.300
Recompression Index (C _r)	0.081	0.059	0.039	0.059
Over Consolidation Ratio (OCR)	1.10	1.67	1.67	0.61

Table 3 - Consolidation Parameters

The consolidation parameters appear to be consistent with lacustrine deposits within the Cleveland area. The soils appear to be over consolidated with OCR ranging between 1.1 to 1.67. Sample BH-16/ST-5 (105-107 feet BGS) had an OCR of 0.61, however, based on our experience, it is anticipated that the preconsolidation pressure of 3,346 psf for a soil specimen at this depth is probably low. There does not appear to be a correlation with the settlement properties with depth.

All phases of the laboratory-testing program were conducted in general accordance with applicable American Society for Testing and Materials (ASTM) specifications. Copies of the laboratory results are provided in Appendix C. Soil samples will be stored at the laboratory for 90 days from the date of this Report unless otherwise directed by the Client.

3.3 Geoenvironmental Sampling and Testing

In order to characterize the fill material in the sub-surface at the Site, four soil samples were collected (i.e., 2 from the Icebreaker Substation/HDD entry pit area and the CPP 138 kV Ring Bus Extension area) for Iaboratory analysis for semi-volatile organic compounds (SVOCs) by U.S. EPA method 8270 and Resource Conservation and Recovery Act (RCRA) 8 metals by U.S. EPA method 6010B. A representative portion of the soil samples were placed in a clean plastic bag for volatile organic compound (VOC) headspace

screening using a photoionization detector (PID) in order to field screen for the presence of VOCs. Rationale for the soil sample selection for analysis were based on the anticipated release mechanism of historical operations, or field observations including PID headspace screening results, staining, discoloration, or odors.

Soil samples from four borings (BH-5, BH-7, BH-9, and BH-13) were sent to the laboratory of analysis of VOCs, SVOCs, RCRA 8 Metals, and PCBs as previously discussed. Multiple chemicals of concerns (COCs) were detected in soils. A total of 4 VOCs, 1 SVOC, and 7 metals were detected above laboratory practical quantitation limits (PQLs).

Detected metals in soil consisted of the following:

Arsenic Barium Cadmium Chromium Lead Selenium Mercury

Detected VOCs in soil consisted of the following:

BenzeneTolueneMethylene ChlorideXylenes

Detected SVOCs in soil consisted of the following:

2-Methylnaphthalene

The laboratory analytical data and a summary table are provided in Appendix D.

4.0 **EXPLORATION FINDINGS**

The following sections present the generalized subsurface conditions observed during the field exploration. During the field activities, our geologist also made observations of existing soil cover/topsoil thicknesses, groundwater conditions, surface features, PID readings, and other site observations deemed important to the planned site development. Refer to the boring logs in Appendix B for more detailed descriptions of the subsurface conditions.

4.1 General Subsurface Conditions

The Site's upper surface consists of a gravel base and asphalt at some locations. In general, fill material was encountered at the CPP site from ground surface to a depth of approximately 29 to 35 feet BGS at the boring locations. The fill material consisted of non-plastic silt and sand with varying amounts of wood, gravel, brick, slag, and coal fragments, with occasional zones of lean clay. The amount of coal and slag appears to be higher in the upper 10 feet of the fill as compared to the lower portions of the fill. Similarly, the amount of brick appears to be higher between 15 to 30 feet BGS within the fill. As previously discussed, the CPP Site was formerly submerged within Lake Erie; based on a review of historic USGS topographic maps, it appears the fill was placed directly on the lacustrine deposits to create developable land. The City does not have specific documentation that describes in detail the origin, method of placement, or the extent of moisture and compaction control during placement, other than the USGS maps that suggests the fill was placed prior to construction of the power plant in the 1920s. It appears that the fill is uncontrolled fill placed randomly and varies in density and moisture contents based on the inconsistent SPT results and moisture contents that vary with depth. Therefore, the engineering characteristics of the fill material, such as composition, strength, and compressibility are considered to be variable. As such, without records of fill placement, monitoring, and testing, the possibility exists that the fill may contain other deleterious materials not identified in recovered soil samples. Consequently, there is a greater than typical risk of unacceptable settlement of the structures when bearing directly on the fill material and if the subgrade is not properly prepared. The blow counts seem to be lower between 10 to 20 feet BGS as compared to other SPT data above and below this zone, probably a result of the fluctuating and presence of the groundwater table at this depth. There does not appear to be a correlation of material type, grain-size of the soil, moisture contents, etc. of the fill vertically or horizontally (between the Icebreaker Substation and CPP 138 kV Ring Bus Extension areas).

Six auger borings were located within the HDD pit location of the Icebreaker Substation area to determine if subsurface debris, oversized materials, or other obstructions are present within the HDD entry pit area along the proposed profiles. Borings AR-1, AR-3, AR-4 and AR-5 encountered an obstruction (i.e., auger refusal) prior to reaching the planned depth – refusal was achieved at 7, 23, 25, and 25 feet BGS, respectively (see Table 1). Based on the standard sample borings, the fill appears to have larger (diameter) pieces of fill material (i.e., larger than 6 inches) within the Icebreaker Substation area as compared to the CPP 138 kV Ring Bus Extension area – as corroborated by the auger borings; so the contractor should be prepared to manage and encounter these materials during HDD pit excavation.

Below the fill was soft to medium stiff lacustrine clay that extended to the termination depth of the borings. Similar soft lacustrine clay deposits were also observed in the CDF12 borings. In general, the first 5 to 15 feet of the lacustrine deposits directly below the fill (approximately 35 to 50 feet BGS), was described as a non-plastic silt or silt sand and typically have lower blow counts as this is probably the former lakebed within the harbor. The blow counts generally increased with depth. There did not appear to be a strong trend with changes in moisture content with depth within the lacustrine deposits. Bedrock was not encountered in any of the borings as it is anticipated to be over 150 feet BGS in this region.

4.2 Groundwater Observations

Water levels in each soil boring were measured immediately upon the completion of drilling, and were at an average depth of approximately 10 feet BGS, which is likely hydraulically connected to the lake water level. The water levels are summarized on Table 4 below. The boreholes were subsequently backfilled with soil cuttings on the same day.

Boring Number	Groundwater Level (ft. BGS)	Approximate Elevation of Groundwater
BH-1	12	569
BH-2	Dry	
BH-3	Dry	
BH-4	10	572
BH-5	Dry	
BH-6	6.5	575.5
BH-7	6.4	575.6
BH-8	7.3	574.7
BH-9	11.4	570.7
BH-10	10.9	573.1
BH-11	9.3	572.7
BH-12	11.2	571.8

BH-13	7.3	576.7
BH-14	N/A	
BH-15	11.4	572.6
BH-16	N/A	
AB-1	9	572
AB-2	8.9	572.1
AB-3	8.9	572.1
AB-4	8.9	572.1
AB-5	9.2	571.8
AB-6	8.8	572.0

Hydrostatic groundwater levels and upper (perched) saturation zones should be expected to fluctuate seasonally due to variations in rainfall, runoff, evapotranspiration, and other factors. Consequently, the measured groundwater levels shown on the boring logs only represent conditions at the time the readings were collected and may thus be different at the time of construction. Furthermore, the actual groundwater levels, seepage, and localized saturated conditions may be observed at shallower depths during periods of heavy precipitation.

5.0 FOUNDATION DISCUSSION AND RECOMMENDATIONS

5.1 Project Description

This Report provides design recommendations relative to foundation type and Site preparation considerations for the installation of electrical substation equipment and structures for the CPP 138 kV Ring Bus Extension (Interconnect facilities) and Icebreaker Substation (switchyard) area and HDD entry pit. It is assumed that minimal amounts of cut/fill (+/- one foot), with the exception of the excavation needed to remove the existing foundations and demolition of the existing structures within the CPP 138 kV Ring Bus Extension area, will be needed to achieve planned final grade. The CPP 138 kV Ring Bus Extension area will be at a final elevation from 582 to 585 feet. The final grade within the Icebreaker Substation area will be at an elevation between 581 to 582 feet. Based on the proposed grading plans prepared by Middough, the final surface will generally be in a south to north grade at a 1.15 to 2.92% slope, with storm water runoff directed towards the northeast corner of the Site to the Lake. The following sizes and structural loads were provided by Middough:

- Transformer = 14 feet by 14 feet pad; weighs 128 kips
- Typical High Pole = vertical load at about 20 kips, ground moment between 670 to 1,150 kips-ft, and shear about 18 kips
- Typical Low to Medium Pole = vertical load at about 6.0 kips, ground moment between 20 to 35 kips-ft, and shear at about 2.0 kips
- SWGR Metal Building = floor live load is at a minimum of 250 psf, and roof live load at a minimum of 50 psf
- Settlement tolerances = $\frac{1}{2}$ to 1-inch (total)

5.2 Foundation Recommendations

5.2.1 Transformer and SWGR Metal Building

Based on the field observations and laboratory test results; slab on grade foundations that bear directly on prepared subgrade surface are considered suitable to support the proposed transformers and lightlyloaded buildings. Foundation supporting systems could be designed for a maximum allowable bearing pressure of 2,500 pounds per square foot (psf) when the site is prepared and the subgrade passes the inspection as outlined in this Report. This allowable bearing pressure is higher than the transformer (14 ft x 14 ft; weight of 128 kips = 650 psf) and SWGR Metal Building (floor live load of 250 psf and roof live load of 50 psf) structural bearing loadings. Extending a footing deeper within this area will not provide a significant benefit as groundwater is relatively shallow (approximately 10 feet BGS) and that would extend the footing closer to the very soft lacustrine deposits, which would both reduce bearing capacity. Although the fill is considered uncontrolled as previously discussed, the fill material is still considered a more suitable material to support the lightly loaded structures than the very soft and wet lacustrine deposits.

If exterior footings are used, they should be placed at a minimum depth of 42 inches below the finished grade in order to protect them from frost per City of Cleveland Building Codes. Interior footings in heated

areas, if present, may be placed at a convenient depth below building floor slab level, provided they bear on suitable material.

All footing excavations should be cut to vertical side walls and flat bottoms with the bottoms comprised of firm soil undisturbed by the method of excavation or softened by standing water. It is anticipated that the fill material has enough fines and moisture that should facilitate temporary vertical side walls during footing excavation, if not the side walls should be sloped as needed. Conventional backhoe type equipment may be used, except in the last few inches when hand excavation methods may be required. Before the backfill or concrete is placed, all water and loose debris should be removed from the excavations. Concrete placement should follow excavation and bearing surface examination as rapidly as practical.

The geotechnical engineer, or a designated representative, should examine footing excavation bottoms, prior to placement of reinforcing steel and concrete in order to determine suitability of the supporting soils. If suitable bearing is not encountered at the proposed bottom of the excavation, the following should be performed as approved by the geotechnical engineer and concurred with by the structural engineer: 1) footings should be redesigned for the lower allowable bearing capacity encountered, 2) undercut the soft soils and replaced with AASHTO #1 and 2 and/or ODOT 304 aggregate and geogrid to further distribute the loads (depth of undercut and geogrid type to be determined in the field by the Geotechnical Engineer based on site conditions), or 3) the underlying unsuitable soils should be removed and replaced with acceptable engineered fill.

Relative to excavation and replacement, the following is recommended:

- 1. The excavation should be performed using conventional backhoe type equipment to minimize disturbance to the soils at the bottom of the excavation.
- 2. The bottom of the excavation should be examined and approved for fill placement by the geotechnical engineer.
- 3. All engineered fill should be placed in lifts not exceeding 8 inches loose thickness and compacted to a density of not less than 98 percent of maximum dry density and +/- 3% of optimum moisture content as established by Standard Proctor (ASTM D698). However, additional compactive effort may be necessary to achieve the bearing pressure noted above. The type of material considered satisfactory for use as engineered fill is provided in Section 6.1. The structural engineer may also specify a lean mix concrete or footing concrete to backfill the overexcavation.
- 4. The material excavated, with the exception of any topsoil or other deleterious material, is considered suitable for re-use in the engineered fill. These soils will, however require some moisture adjustment in order to achieve the specified densities.
- 5. All fill should be placed and compacted under the continuous observation and testing by a technician under the general guidance of the geotechnical engineer.

Provided the equipment pad subgrade is properly prepared as previously discussed, if the equipment pad bears on a granular base course of approved granular material it should be of adequate thickness to help distribute concentrated loads, to provide more uniform subgrade support, and to act as a capillary moisture break. For the native subgrade soils observed, a subgrade modulus (k) of 110 pounds per cubic inch (pci) may be used for the base course pad design, if needed.

5.2.2 Poles

Although several pile types are suitable for use on the Site, only drilled piers have been analyzed at this time for the poles located in the CPP 138 kV Ring Bus Extension area. Pile capacity analyses have been performed for the high pole (vertical load of 20 kips, ground moment of 670 kip-ft, and shear of 18 kips) and low to medium pole (vertical load of 6 kips, ground moment of 20 kip-ft, and shear of 2 kips). Based on these loads, the subsurface conditions observed within the borings in the CCP 138 kV Ring Bus Extension area (borings BH-9 to BH-13), and the anticipation that spread footings will not be able to support the poles at these loads within the fill, we have estimated a minimum 3-foot diameter caisson (with 2% steel) that extends 35 feet BGS and an 24-inch diameter caisson that is 15 feet BGS for the high and low to medium poles, respectively, for lateral displacements less than 2 inches. The designer should perform vertical and laterally loaded pile calculations using the final loading conditions to determine the final size and depth of piles needed to support the poles. Table 5 presents a generalized subsurface soil profile observed during the field exploration (based on soil boring BH-1) and recommended geotechnical values for design of the drilled piers within the leebreaker Substation and CPP 138 kV Ring Bus Extension areas.

These values were based on our experience and conservatively estimated based on material type and results from the SPT and laboratory results. Due to the variability of the fill material, it is recommended that a minimum factor of safety of 2.0 be used during the design. Due to the presence of the uncontrolled fill (e.g., bricks, slag, gravel, wood, etc.) and the obstructions observed at relatively shallow depths in the leebreaker Substation borings (i.e., borings AR-1, AR-3, AR-4 and AR-5 encountered obstructions at 7, 23, 25, and 25 feet BGS, respectively), care should be taken when advancing the caissons within the fill to maintain quality of the installation and to avoid equipment damage.

Material	Depth BGS (feet) ¹	Wet Unit Weight (pcf)	Shear Strength (degrees or psf)	Ultimate Skin Friction (psf)	Ultimate End Bearing (psf)	Lateral Modulus (k, pci)	Strain Factor (E50)	Lateral Earth Pressure Coefficient (K₀)	Poisson's Ratio (µ)
FILL-Medium Dense Silty Sand	0 -10	115	φ=28	800		90		0.53	0.30
FILL-Loose Sand	10 - 25	115	φ=23	650	5,000	90		0.61	0.25
FILL – Medium Dense to Dense Silty Sand	25 - 35	120	φ=30	1,200	10,000	90		0.50	0.35
Loose to Medium Dense Silty Sand with Gravel	35 - 40	122.5	φ=23	650	5,000	90		0.61	0.25
Soft to Medium Stiff Lean Clay	40 - 60	125	750	650	5,000	100	0.02	0.80	0.40
Medium Stiff to Stiff Lean Clay	60 - 100	125	1,000	800	9,000	100	0.01	0.75	0.45

Table 5 – Generalized Soil Profile

An alternative to a deep foundation system would be to modify the existing soils with rammed aggregate pier systems (RAPs). RAPs are patented intermediate foundation technology systems that are generally constructed by applying direct vertical ramming energy to densely compact successive thin lifts of highquality crushed rock to form high stiffness engineered elements. The vertical ramming action also increases the lateral stress and improves the soils surrounding the cavity, which results in foundation settlement control and greater bearing pressures. RAPs may also have difficulty achieving desired depth due to the potential obstructions located at the Site. RAPs are typically proprietary products and the companies will need to be contacted for pricing and structural design support. Hull can assist with the design and provide site-specific geotechnical information to a structural engineer to support the design of extended type foundation systems.

5.3 Comparison of COCs to Applicable Standards

The COCs detected in soil as previously discussed were compared to Ohio Voluntary Action Program (VAP) generic numerical standards (GNS) for direct contact with soil for commercial/industrial land use and construction/excavation activities, pursuant to OAC 3745-300-08, effective May 16, 2016. These comparisons are shown in the Table provided in Appendix D, and are summarized below.

Arsenic was detected in two soil samples (BH-7 from 3.5 to 5.5 feet and BH-9 from 3.5 to 5.5 feet) above the direct contact soil standard for commercial/industrial activities. All other COCs reported in soil samples collected at the Property were below their respective single-chemical direct contact soil standards for commercial/industrial land use and construction/excavation activities.

6.0 CONSTRUCTION CONSIDERATIONS

6.1 Site Preparation and Compaction Requirements

As previously discussed, it is assumed that minimal amounts of cut/fill (+/- one foot), with the exception of the excavation needed to remove the existing foundations and demolition of the existing structures within the CPP 138 kV Ring Bus Extension area, will be needed to achieve planned final grade. The CPP 138 kV Ring Bus Extension area will be at a final elevation from 582 to 585 feet. The final grade within the lcebreaker Substation area will be at an elevation between 581 to 582 feet.

The on-site material and imported soils can be used for general fill activities and to backfill the excavations from the existing foundation removal, provided that the following is met:

- On-site material, with the exception of any topsoil, organic contaminated soil or other deleterious materials, are satisfactory for use as engineered fill for support of lightly loaded buildings/sheds, equipment, and gravel pads, subject to compactive effort applied and possible adjustment of moisture as may be required to achieve specified density requirements. Brick larger than 3 inches in any direction shall be removed.
- Imported material can be considered satisfactory for use as engineered fill includes clean clayey soil (USCS CL, SC, or GC), bank run sand and gravel, or ODOT 304 aggregate. The fill material should be free from contamination with topsoil, organic matter, rocks having a major dimension greater than 3-inches, and frozen soil. Fat clays (CH) and reclaimed asphalt concrete pavement is not considered a suitable fill material. Soils described as silt (USCS ML or MH) is also not considered a suitable fill material at the subgrade surface because the stability of these materials is very sensitive to increases in moisture, therefore, these soils should not be placed within three feet of the top of the subgrade. Materials with an ASTM D698 maximum dry density of less than 100 pounds per cubic foot are not considered satisfactory for use as fill.

Do not place frozen fill material or place fill material on frozen ground/subgrade. Insulation blankets, straw, a sacrificial soil layer, or other means may be used to protect the ground surface or subgrade when freezing temperatures are expected. Remove and discard frozen materials within undercut areas or other areas requiring excavation prior to use as engineered fill.

If the moisture content of the fill being placed or the native subgrade is too high (i.e., greater than 3% above optimum moisture content per ASTM D698), appropriate adjustment entails spreading and exposing to the sun and wind for drying and using equipment such as a disc and/or a grader. This may not be feasible during wet seasonal conditions. Wet soils will pump and may cause excessive rutting under heavy equipment traffic. Therefore, improvements to the subgrade may be achieved by undercutting and replacing with suitable fill (possibly in combination with a non-woven geotextile or biaxial geogrid) or stabilization with lime or cement. The most appropriate subgrade improvement technique should be determined at the time of construction. If the moisture content of the fill is too low, a water truck with a sprinkler bar may be

required. After sprinkling, the soil should be thoroughly mixed with a disc and/or a grader.

All suitable fill as required to establish planned grade, should be uniformly compacted in lifts not exceeding 8 inches loose thickness to a density of not less than:

- 98% of the maximum dry density and +/- 3% of optimum moisture content (OMC) as established by ASTM procedure D 698 (Standard Proctor), in areas of building/shed and equipment support, and for the backfill of the existing foundation areas; and
- 100% of the maximum dry density and +/- 3% of OMC as established by ASTM procedure D 698 in all areas subject to vehicular traffic loads.

6.2 Proof Rolling

Upon achieving final subgrade elevation; completion of stripping, clearing, and grubbing activities; and prior to controlled fill placement, it is recommended that the soil subgrade be compacted, proof rolled, examined, and approved by the geotechnical engineer, or a designated representative. The proof roll should be performed directly on the subgrade surface over the entire work areas to identify any soft, weak, loose, or excessively wet subgrade conditions. The proof rolling should be completed with a minimum 20-ton fully-loaded tandem-axle dump truck (or equivalent). The vehicle should pass in each of two perpendicular directions covering the proposed work area, if feasible.

Any identified unstable zones should be stabilized as determined in the field based on observed visible conditions of the proof roll. Stabilization methods may include, but are not limited to, disking the subgrade surface to allow for drying (if wet conditions are encountered), additional compaction, or undercutting to a firm, stable depth and replacing the soft/weak zones with controlled fill, as directed by the geotechnical engineer. Backfilling the undercuts with well graded aggregate and AASHTO #1 and #2 stone, and installing geogrid (such as Tensar Biaxial Geogrid BX1200), or equivalent, at the base of the undercut will improve stability and overall performance of the subgrade. Once the subgrade is stable, filling activities may begin. It is anticipated that the fill material will consist of material generated during excavation activities. Suitable controlled fill material should consist of soils where moisture is controlled and rocks are appropriately sized to allow for placement of a uniform lift as described herein.

6.3 Removal of Existing Foundations

It is understood that the Demolition Plan developed by Middough indicate that the existing foundations designated for demolition are to be removed completely within the areas of the lebreaker Substation and the CPP 138 kV Ring Bus Extension Areas where new structure and equipment is to be located, and a minimum of 5 feet below existing ground surface for the other areas within the project limits. In areas where existing foundations are closely spaced, a general excavation of the entire area may be more efficient than removal and backfill of the excavation for individual structures - this is considered a means and methods and should

be at the discretion of the contractor provided that the excavations are properly backfilled as discussed herein. In addition, a general removal and replacement approach may provide an opportunity to prepare the subgrade where various equipment may be supported on mats or slab on grade systems. Section 6.1 provides recommendations related to the material types that are considered suitable for backfilling of the excavations and also compaction requirements.

It is also understood that the Contractor is responsible to investigate the location and condition of the existing circulating water intake/discharge tunnels which are reported to be located directly beneath the CPP 138 kV Ring Bus Extension area. It is recommended that these tunnels be located and completely removed or abandoned in place (e.g., grouted, etc.), or the new tower foundation systems be redesigned or relocated to avoid the effects of the tunnels.

6.4 Pavement Considerations

Based on the results of the soil testing, either a Portland cement concrete or asphalt concrete pavement design may be employed by the proposed development if needed. Most of the borings located within the proposed paved areas encountered gravel at the surface. Subgrade soil with a CBR of 7 and a subgrade modulus of 110 pci may be used for the design of flexible (asphalt) and rigid (concrete) pavements, respectively. This is valid if the fill is compacted and the subgrade is prepared as outlined above.

6.5 Drainage

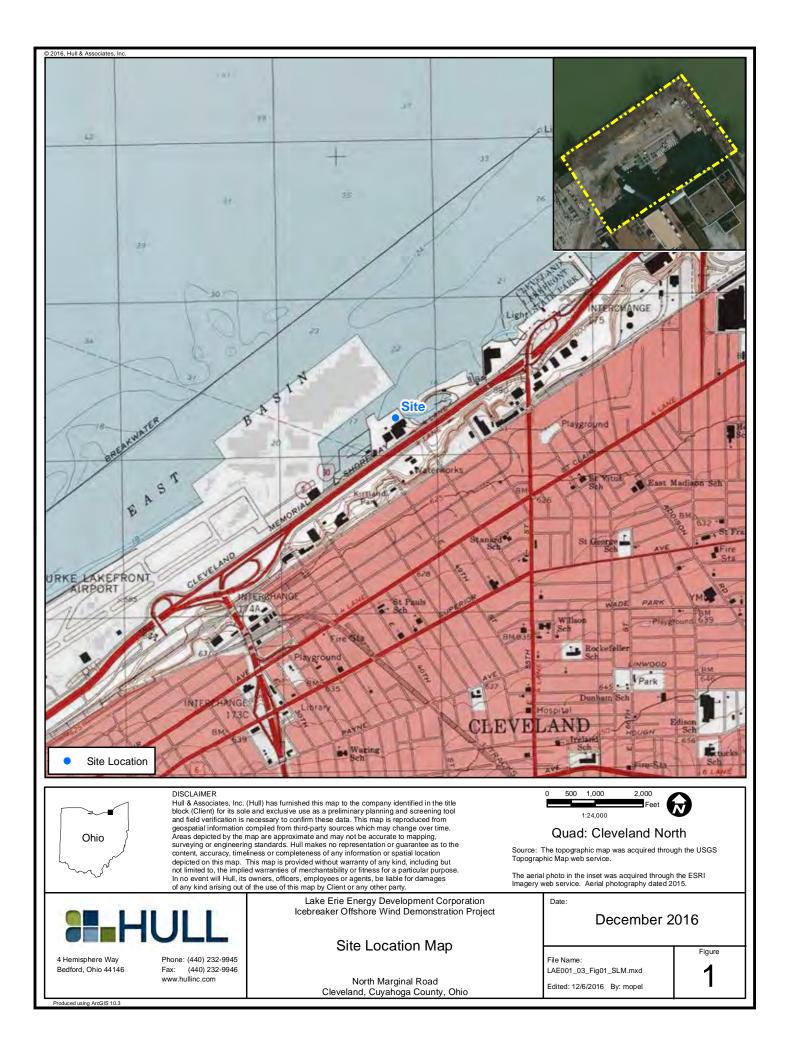
Adequate drainage should be established at the Site to minimize any increase in the moisture content of the subgrade material. Positive drainage of the Site should be created by gently sloping the surface away from the site and into drainage swales. Surface water runoff should be properly controlled and drained away from the Site. It should be noted that the subgrade soils are subject to shrinking and swelling whenever their seasonal moisture contents vary.

6.6 Groundwater Control

The contractors should be prepared to deal with any seepage or surface water that may accumulate in excavations. Based on the fact that ground water was encountered at approximately 10 feet at the site, dewatering may be required during construction of the HDD entry pits because it is anticipated the excavations will extend below the water table. Fluctuations in the ground water may occur seasonally and due to variations in rainfall, construction activity, surface runoff, and other factors. Since such variations are anticipated, we recommend that design drawings and specifications accommodate such possibilities and that construction planning be based on the assumption that such variations can occur.

6.7 Excavations

The contractor is solely responsible for designing and constructing stable, temporary excavations and should shore, slope, or bench the sides of the excavations as required to maintain stability of both the excavation sides and bottom. All excavations should comply with applicable local, state, and federal safety regulations including the current Occupational Safety and Health Administration (OSHA) Excavation and Trench Safety Standards (29 CFR Part 1926). The information in this report is being provided solely as a service to our client. Under no circumstance should the information provided be interpreted to mean Hull is assuming responsibility for construction Site safety.

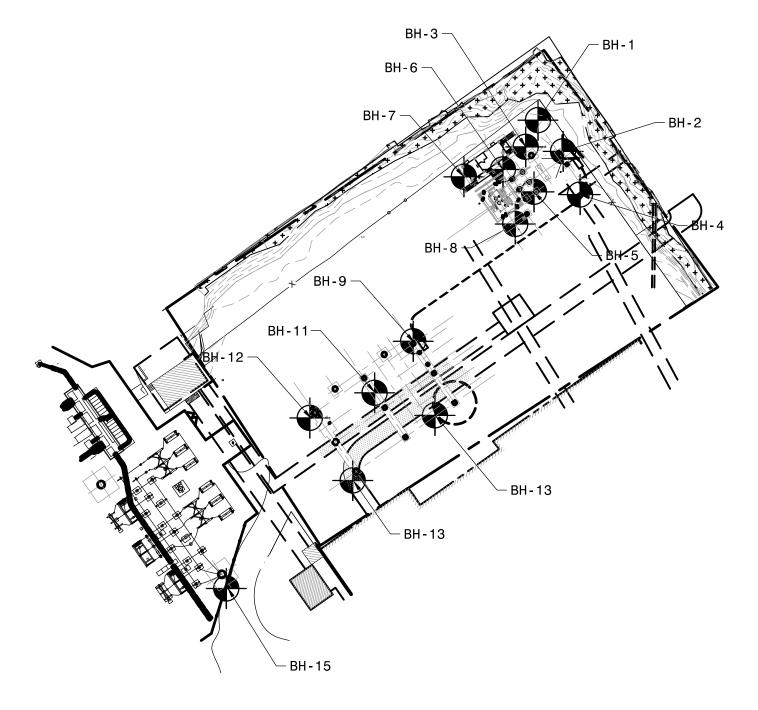

6.8 Geotechnical Related Construction Observation and Testing

The recommendations presented in this Report are based on information disclosed by the limited number of borings. The boring information must be extrapolated to determine the subsurface conditions occurring over the entire site. This extrapolation is based on the knowledge of soil forming geological processes and on past experience. Therefore, the recommendations presented in this report are based in part on the assumption that certain natural conditions will actually be encountered and not be altered during construction. Consequently, it is recommended that Hull perform the construction observation and testing. The recommendations in this Report are considered final only if we observe the foundation excavation to determine if actual subsurface conditions differ from those encountered during this exploration.

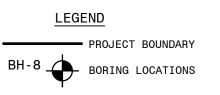
7.0 STANDARD OF CARE AND LIMITATIONS

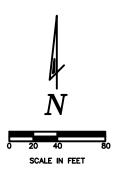
The conclusions and recommendations presented herein are based on the level of effort and investigative techniques using that degree of care and skill ordinarily exercised under similar conditions by reputable members of the profession practicing in the same or similar locality at the time of service. No other warranties, expressed or implied, is made or intended by this report. An evaluation of past or present compliance with federal, state, or local environmental or land use laws or regulations has not been conducted. Conclusions presented by Hull regarding the Site are consistent with the Scope of Work, level of effort specified, and investigative techniques employed. Reports, opinions, letters and other documents do not evaluate the presence or absence of any compound or parameter not specifically analyzed and reported. Hull makes no guarantees regarding the completeness or accuracy of any information obtained from public or private files. In addition, Hull makes no guarantees on the condition of the Site or changes in Site records after the date reviewed as indicated in the Report.

Furthermore, this Report is prepared for, and made available for the sole use of Lake Erie Energy Development Corporation and their assigns. The contents thereof may not be used or relied upon by any other person or entity, without the express written consent and authorization of Lake Erie Energy Development Corporation and Hull. FIGURES

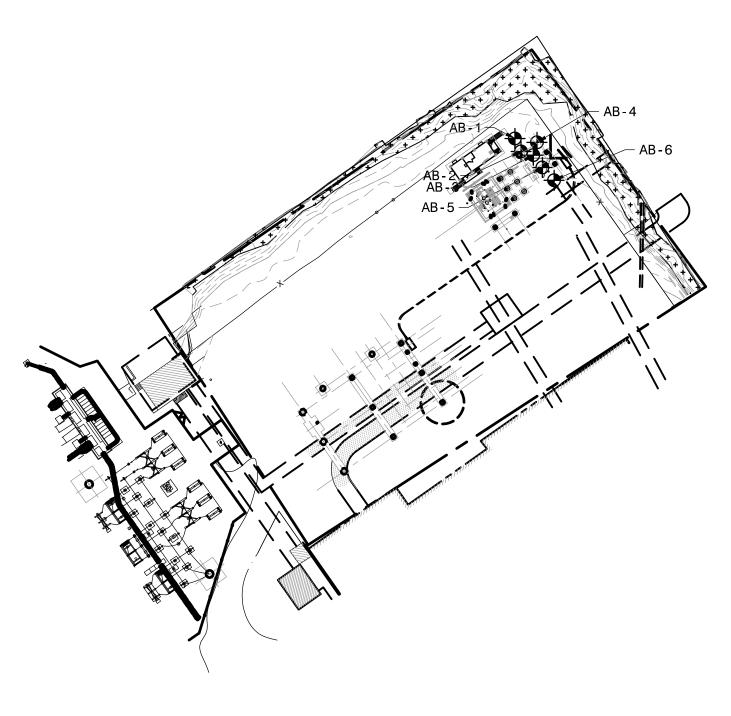


APPENDIX A


Site Plan and Boring Location Maps

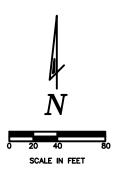

NOTES

- BASE MAP AND EQUIPMENT LAYOUT BASED ON MIDDOUGH'S 90% REVIEW DRAWINGS DATED 12-/9/2016
- 2. TOPOGRAPHY BASED ON KS ASSOCIATES FIELD SURVEY (DATE OF SURVEY: 8/18-23-2016).
- 3. THE BASIS OF BEARINGS FOR THE SURVEY IS OHIO STATE PLANE, NORTH ZONE NAD83(2011) GRID NORTH. VERTICAL DATUM IS NAVD 1988
- 4. THE PROJECT BOUNDARY SHOWN IS AN APPROXIMATE LIMIT OF THE PROJECT WORK LIMITS AND DOES NOT REPRESENT A COMPLETE BOUNDARY SURVEY.


	ICE	LAKE ERIE ENERGY DEVELOPMENT CORPORATION ICEBREAKER OFFSHORE WIND DEMONSTRATION PROJECT							
	FIGURE 1								
	BORING LOCATION MAP								
		NORTH MARGINA CLEVELAND, CUYAHOGA							
-9945		OLEVELAND, OUTAHOUA	000111, 01110						
9946	PROJECT NO.:	LAE001	SUBMITTAL DATE:	DECEMBER 2016					
	CAD DWG FILE:	LAE001.100.0001 SAH	PLOT DATE:	12/22/16					

945 6	PROJECT NO.:	LAE001	SUBMITTAL DATE:	DECEMBER 2016
	CAD DWG FILE:	LAE001.100.0001 SAH	PLOT DATE:	12/22/16

NOTES


- 1. BASE MAP AND EQUIPMENT LAYOUT BASED ON MIDDOUGH'S 90% REVIEW DRAWINGS DATED 12-/9/2016
- 2. TOPOGRAPHY BASED ON KS ASSOCIATES FIELD SURVEY (DATE OF SURVEY: 8/18-23-2016).
- 3. THE BASIS OF BEARINGS FOR THE SURVEY IS OHIO STATE PLANE, NORTH ZONE NAD83(2011) GRID NORTH. VERTICAL DATUM IS NAVD 1988
- 4. THE PROJECT BOUNDARY SHOWN IS AN APPROXIMATE LIMIT OF THE PROJECT WORK LIMITS AND DOES NOT REPRESENT A COMPLETE BOUNDARY SURVEY.

- PROJECT BOUNDARY AB-4 _____ BORING LOCATIONS

	LAKE ERIE ENERGY DEVELOPMENT CORPORATION ICEBREAKER OFFSHORE WIND DEMONSTRATION PROJECT						
	FIGURE 3						
		AUGER BORING	LOCATIONS				
		NORTH MARGINA					
2-9945		CLEVELAND, CUYAHOGA	COUNTY, OHIO				
9946	PROJECT NO.:	LAE001	SUBMITTAL DATE:	DECEMBER 2016			
	CAD DWG FILE:	LAE001.100.0001 SAH	PLOT DATE:	12/22/16			

APPENDIX B

General Information, Drilling Procedures, and Logs of Borings Definition of Terms Used to Describe Subsurface Materials on Boring Logs (16 Sample Borings and 6 Auger Borings)

HULL

GENERAL INFORMATION, DRILLING PROCEDURES AND LOGS OF BORINGS

Drilling and sampling were conducted in accordance with procedures generally recognized and accepted as standardized methods of investigation of subsurface conditions concerning geotechnical engineering considerations. Borings were drilled with either a truck-mounted or ATV-mounted drill rig.

Drive split-barrel sampling was performed in 1.5-foot increments at intervals not exceeding 5 feet. In the event the sampler encountered resistance to penetration of 6 inches or less after 50 blows of the drop more representative samples were preserved from each sampling increment.

In borings where rock was cored, NXM or NQ sized diamond coring tools were used.

Depth of water recorded in the boring is measured from the top of existing ground surface to the top of water level. Initial water level measurement indicates the water level observed during the drilling activities and the static water level indicates the water level observed immediately after drilling. In relatively pervious soils, such as sandy soils, the indicated depth is considered a reliable groundwater level for that date. Seasonal variations, temperature and recent rainfall conditions may influence the levels of the groundwater table and volumes of water will depend on the permeability of the soils. In fine-grained soils, such as clay and silt, such readings are less reliable.

In the laboratory, all samples were described based on the visual-manual examination soil classification system in accordance with ASTM D2488. Moisture contents of representative fine-grained soil samples were determined. A limited number of samples, considered representative of foundation materials present, were selected for performance of grain-size analyses and plasticity characteristics test.

The boring logs included in the Attachment have been prepared on the basis of the field record of drilling and sampling, and the results of the laboratory examination and testing of samples. Stratification lines on the boring logs indicating changes in soil stratigraphy represent depths of changes approximated by the driller, by sampling effort and recovery, and by laboratory test results. Actual depths to changes may differ somewhat from the estimated depths, or transitions may occur gradually and not be sharply defined. The boring logs presented in this report therefore contain both factual and interpretative information and are not an exact copy of the field log.

Although it is considered that the borings have disclosed information generally representative of actual site conditions, it should be expected that between borings conditions may occur which are not precisely represented by any one of the borings. Soil deposition processes and natural geologic forces are such that soil and rock types and conditions may change in short vertical intervals and horizontal distances.

Soil/rock samples will be stored at Hull & Associates Inc.'s laboratory for a period of 90 days. After this period of time, they will be discarded, unless notified to the contrary by the client.

DEFINITION OF TERMS USED TO DESCRIBE SUBSURFACE MATERIALS ON BORING LOGS

DESCRIPTION OF SOILS

The soil descriptions on the boring logs are based on visual-manual examination (ASTM D 2488) of soil samples, Standard Penetration Test (ASTM D 1586) results, and the results of laboratory testing on selected soil samples. Soils are described as to density or consistency, color, grain size distribution, moisture condition, and other pertinent properties, in that order. SAA indicates material can be described as "Same As Above", with any differences noted. Soil descriptions are according to the following criteria, with the principal constituent, written in capital letters.

Standard Penetration Test (ASTM D 1586)

In the Standard Penetration Test, a 2.0-inch outside diameter, 1.375-inch inside diameter split-spoon sampler is driven 18 inches into soil by means of a 140-pound hammer falling freely through a vertical distance of 30 inches. The sampler is normally driven in three successive 6-inch increments. The total number of blows required to drive the split spoon sampler over 12 inches of penetration during the second and third successive increments is the Standard Penetration Test N-Value. If the blow count for any half foot increment exceeded 50, the SPT was stopped and the distance the sampler was driven was measured and recorded (e.g., 50/2 indicates 50 blows were recorded for a 2-inch penetration).

Sampling method abbreviations

Methods by which soil samples are collected for analysis are abbreviated as follows:

AS - Auger Sample - directly from auger flight

- SP Split Spoon Sample
- ST Shelby Tube Sample
- RC Rock Core
- DP Direct Push Sample

Density of cohesionless soils

Density of **cohesionless** soils is based upon results of Standard Penetration Tests as indicated below:

Density Term	N-Value (Blows per foot)
Very loose	0-4
Loose	5-10
Medium Dense	11-30
Dense	31-50
Very Dense	Over 50

Consistency of cohesive soils

Consistency of cohesive soils is based on Standard Penetration Test results and the unconfined compressive strength.

Consistency Term	N-Value (Blows per foot)	Unconfined Compressive Strength (tons per square foot)
Very soft	<2	<0.25
Soft	2-4	0.25-0.5
Medium stiff	5-8	0.5-1.0
Stiff	9-15	1.0-2.0
Very stiff	16-30	2.0-4.0
Hard	>30	>4.0

<u>Color</u>

Soil color is described in basic terms, such as brown, black, red, grey, and yellow. If the soil is a uniform color throughout, the term is single, modified by adjectives such as light and dark. If the predominant color is shaded by a secondary color, the secondary color precedes the primary color. If two major and distinct colors are swirled throughout the soil, the colors are modified by the term "mottled".

Material	Definitions	Fractions	Sieve Limits					
Malenai	Definitions	riacions	Upper	Lower				
Boulders	Material too large to pass through an opening 12 in. square.							
Cobbles	Material passing through a 12 in. square opening and retained on the 3 inch sieve.							
Gravel	Material passing the 3 in. sieve and retained on $1/4$ in. (No. 4) sieve.	Coarse Fine	3 in 3/4 in.	3/4 in No. 4 (1/4in.)				
Sand	Material passing the No. 4 sieve and retained on the No. 200 Sieve.	Coarse Medium Fine	No. 4 (1/4") No. 10 (1/8") No. 40 (1/32")	No. 10 (1/8") No. 40 (1/32") No. 200				
Silt	Material passing the No. 200 sieve, which is usually non-plastic or very slightly plastic in character and exhibits little or no strength when air dried.		No. 200					
Clay	Material passing the No. 200 sieve, which can also be made to exhibit plasticity within a certain range of moisture contents and which exhibits considerable strength when air dried.		No. 200					

Soil constituents may be stated in terms of percentages (by weight) of gravel, sand, and fines, as follows:

Trace - particles of a given size range present, but present at $<\!5\%$

Few - 5 to 15% Little - 15 to 25% Some - 30 to 45% Mostly - 50 to 100%

Moisture condition

Moisture contents may be written as dry, moist or wet as described below:

- Dry Absence of moisture, dusty, dry to the touch
- Moist Damp but no visible moisture
- Wet Visible free water, usually soil below the water table

DESCRIPTION OF ROCK

The following terms are used to describe the degree of weathering of the rock specimen relative to that of the comparable unweathered parent rock. (Do not confuse relative strength/hardness with weathering.):

	<u>Unweathered</u>	No evidence of any chemical or mechanical alternation of the rock mass. Mineral crystals have a bright appearance with no discoloration. Fractures show little or no staining on surfaces.
	<u>Slightly Weathered</u>	<10% of rock volume altered. Slight discoloration of the surface w/minor alterations along open fractures.
	<u>Moderately Weathered</u>	Portions of the rock mass are discolored as evident by a dull appearance. Surfaces may have a pitted appearance. Isolated zones of varying rock strengths due to alteration may be present. 10 to 15 percent of the rock volume presents alterations.
	<u>Highly Weathered</u>	Entire rock mass appears discolored and dull. Some pockets of slightly to moderately weathered rock may be present and some areas of severely weathered materials may be present.
	<u>Severely Weathered</u>	Majority of the rock mass reduced to a soil-like state with visible relict rock texture. Zones of more resistant rock may be present, but the material can generally be molded and crumbled by hand pressures.
The	following terms are used	to describe the relative strength/hardness of the bedrock:
	Very Weak	Can be easily scratched by fingernail or knife. Pieces 1 inch (25 mm) or more in thickness can be
	k	proken by finger pressure.
	<u>Weak</u> n	Can be grooved or gouged readily by a knife or pick. Can be excavated in small fragments by noderate blows of a pick point. Small, thin pieces can be broken by finger pressure.
		Can be scratched with a knife or pick. Grooves or gouges to ¼" (6mm) deep can be excavated by hand slows of a geologist's pick. Requires moderate hammer blows to detach specimen.
	Very Strong	Can be scratched with a knife or pick only with difficulty. Requires hard hammer blows to detach specimen. Cannot be scratched by a knife or sharp pick. Breaking of hand specimens requires hard repeated plows of the geologist hammer.

Rock Quality Designation, RQD – This value is expressed in percent and is an indirect measure of rock soundness. It is obtained by summing the total length of all core pieces which are at least four inches long, and then dividing this sum by the total length of the core recovered.

		HUIL & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				B	BOR	ING	S NU	JME		AB 1 0	
CLIE	NT La	ke Erie Energy Development Corporation (LEEDCo)	PROJEC	T NAME	Icebr	eaker Offsl	hore V	/ind P	roject				
PROJ	ECT N	UMBER LAE001	LAE001 PROJECT LOCATION Former CPP Facility and CDF 12, Cleveland, Ohio 21/16 COMPLETED 10/21/16 GROUND ELEVATION 581 ft TOR HAD GROUND WATER LEVELS: 2002 DRILLING METHOD 3.25" Hollow Stem Auger AT TIME OF DRILLING 9.01 ft / Elev 571.99 ft ecki CHECKED BY S. McGee AT END OF DRILLING 527109, -81.661864 AFTER DRILLING MATERIAL DESCRIPTION Umage 100 (mage) 100 (mage										
DATE	STAR	TED _10/21/16 COMPLETED _10/21/16	GROUNE) ELEVA		581 ft							
DRILI	ING C	ONTRACTOR HAD	GROUNE	WATER	R LEVE	LS:							
RIG T	YPE	Mobile EQ002 DRILLING METHOD 3.25" Hollow Stem Au	ıger ⊻AT	TIME OF	DRIL	LING 9.01	1 ft / El	ev 57	1.99 ft				
LOGO	GED B	J. Mielecki CHECKED BY S. McGee	AT	END OF	DRILL	ING							
COOF	RDINAT	ES _41.527109, -81.661864	AF	ter dri	LLING								
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
	$ \circ \land \circ $	GRAVEL surface, existing.											
 _ 5		Black silty SAND, with coal.											
	N _ A	Auger refusal at 7 feet.											
		Bottom of borehole at 7 feet.											
1		$\overline{\Delta}$											

	HUIL & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				B	BOR	ING	i NU			AB ■ 1 0	
CLIENT	Lake Erie Energy Development Corporation (LEEDCo)	PROJECT	Γ NAME	Icebr	eaker Offsl	hore V	Vind P	roject				
PROJEC	TNUMBER LAE001	PROJECT			Former CP	P Fac	ility an	d CDF	= 12, C	levela	ind, Oł	hio
DATE ST	ARTED _10/21/16 COMPLETED _10/21/16		ELEVA		581 ft							
	G CONTRACTOR HAD											
	Mobile EQ002 DRILLING METHOD 3.25" Hollow Stem Au	-	TIME OF	DRIL	LING 8.90) ft / E	lev 572	2.10 ft				
	BY J. Mielecki CHECKED BY S. McGee				_ING							
COORDI	NATES _41.527080, -81.661847	AF	fer dri	LLING								
DEPTH (ft) GRAPHIC	တိုင်္သိုင်ငံက MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
0	Black SAND										ш.	ш
	Black SAND. Black SAND, some cobble. Black SAND. ✓ Black silty SAND, with gravel.											
	Bottom of borehole at 20 feet.											

		HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				E	SOR	ING	i NU			E 1 0	
CLIE	NT Lake	e Erie Energy Developm	ent Corporation (LEEDCo)	PROJEC	T NAME	Icebr	eaker Offs	hore V	Vind P	roject				
PRO	JECT NU	MBER LAE001		PROJEC			Former CF	P Fac	ility an	d CDF	= 12, C	levela	nd, Ol	hio
DAT	E START	ED 10/21/16	COMPLETED 10/21/16	GROUNE	ELEVA		581 ft							
			G METHOD 3.25" Hollow Stem		TIME OF	DRILI	_ING _ 8.93	3 ft / E	lev 572	2.07 ft				
			CHECKED BY S. McGee				ING							
C00	RDINATE	S <u>41.527071, -81.6618</u>	309	AF	ter dri	LLING								
					Ш	%	-	z	Ŀ.				RG	LN N
o DEPTH (ft)	GRAPHIC LOG	MA	TERIAL DESCRIPTION		SAMPLE TYP NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
		Black gravelly SAND.	ret. 23 feet.											

RIG TYPE Mobile EQ002 DRILLING N		_										
DATE STARTED _10/21/16 C DRILLING CONTRACTOR HAD HAD RIG TYPE _Mobile EQ002 DRILLING N												
DRILLING CONTRACTOR HAD RIG TYPE Mobile EQ002 DRILLING N					Former CP	P Fac	lity an	d CDF	12, C	levela	nd, Ol	nio
RIG TYPE Mobile EQ002 DRILLING N												
		_ •	TIME OF	DRILI	LING 8.93	3 ft / El	ev 572	2.07 ft				
LOGGED BY J. Mielecki C					ING							
COORDINATES 41.527100, -81.661798		_ AF1	ER DRI	LLING								
DEPTH (ft) (ft) CRAPHIC LOG LOG	RIAL DESCRIPTION		SAMPLE TYPE NUMBER	/ERY % 2D)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	L		5	FINES CONTENT (%)
0			SAMPL NUN	RECOVERY (RQD)	COL (N V/	POCKE (t	d) IN JAD	MOIS	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES O
Black sandy SILT. Black gravelly SAND, with COBBLE. Black gravelly SAND, with D D D D D D D D D D D D D												

CLIENT_Lake Eric Energy Development Corporation (LEEDCo) PROJECT NAME _ Loebreaker Offshore Wind Project_ PROJECT NUMBER_LAEGO1 PROJECT LOCATION _ Former CPP Facility and CDF DATE STARTED 10/21/16 GROUND ELEVATION _ 501 ft DRILLING CONTRACTOR HAD	
DATE STARTED 10/21/16 GROUND ELEVATION 581 ft DRILLING CONTRACTOR HAD GROUND WATER LEVELS: RIG TYPE Mobile EQ002 DRILLING METHOD 3.25" Hollow Stem Auger AT TIME OF DRILLING 9.21 ft / Elev 571.79 ft LOGGED BY J. Mielecki CHECKED BY S. MoGee AT END OF DRILLING	ATTERBERG LIMITS
DRILLING CONTRACTOR HAD GROUND WATER LEVELS: RIG TYPE Mobile EQ002 DRILLING METHOD 3.25" Hollow Stem Auger AT TIME OF DRILLING 9.21 ft / Elev 571.79 ft LOGGED BY J. Mielecki CHECKED BY S. McGee AT END OF DRILLING	ATTERBERG LIMITS
RIG TYPE Mobile EQ002 DRILLING METHOD 3.25° Hollow Stem Auger AT TIME OF DRILLING 9.21 ft / Elev 571.79 ft LOGGED BY J. Mielecki CHECKED BY S. McGee AT END OF DRILLING	ATTERBERG LIMITS
LOGGED BY J. Mielecki CHECKED BY S. McGee AT END OF DRILLING	ATTERBERG LIMITS
COORDINATES 41.527043, -81.661782 AFTER DRILLING	
H U <thu< th=""> U U U U<td></td></thu<>	
0 GRAVEL surface, existing. - - <	
0 GRAVEL surface, existing. - - <	
0 GRAVEL surface, existing. - - <	LIQUID LIMIT PLASTIC LIMIT PLASTICIT INDEX FINES CON
0 GRAVEL surface, existing. - - <	
0 GRAVEL surface, existing. Black gravelly SAND, some clay, some clay tile fragments. 5 6 7 6 7 7 8 7 8 9 10 10 10 10 10 10 10 10 10 11 12 13 14 15 15 16 17	
GRAVEL surface, existing. Black gravelly SAND, some clay, some clay tile fragments. Black silty SAND, with gravel, wet. Soft, black silty SAND, with gravel, wet. COBBLE. COBBLE.	
Black gravelly SAND, some clay, some clay tile fragments.	
Soft, black silty SAND, with gravel, wet.	
Soft, black silty SAND, with gravel, wet. 10 COBBLE. COBBLE.	
5 ° Soft, black silty SAND, with gravel, wet.	
Soft, black silty SAND, with gravel, wet.	
10 10 COBBLE. 15 15 15 15 15 15 15 15 15 15	
10 10 COBBLE. 15 15 15 15 15 15 15 15 15 15	
10 10 COBBLE. 15 15 15 15 15 15 15 15 15 15	
Auger refusal at 25 feet. Bottom of borehole at 25 feet.	

		HUIL & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				B	OR	ING	i NU			AB 10	
CLIE	NT La	ke Erie Energy Development Corporation (LEEDCo) PR	OJECT	NAME	Icebr	eaker Offsl	nore W	/ind P	roject				
						Former CP				= 12, C	levela	nd, Oł	hio
DAT		TED _10/21/16 COMPLETED _10/21/16 GR		ELEVAT		581 ft							
DRIL	LING C	ONTRACTOR HAD GR		WATER	LEVE	LS:							
RIG		Mobile EQ002 DRILLING METHOD _3.25" Hollow Stem Auger	$\overline{\mathbb{V}}$ at t		DRIL	LING 8.97	ft / El	ev 572	2.03 ft				
LOG	GED B	CHECKED BY S. McGee	AT E	END OF	DRILL	.ING							
coo	RDINA	TES <u>41.527013</u> , -81.661747	AFT	ER DRII	LLING								
				111							ERBE	RG	Ļ
	<u>ں</u>			SAMPLE TYPE NUMBER	% ∕.	ς SΞ	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)		IMITS	; \>-	Ε
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		ЧВЦ ИВЦ	RECOVERY ((RQD)	BLOW COUNTS (N VALUE)	sf) F	of)	I L L L	≙⊢	₽⊤	Éx	NO: (%
				MUN	Ю. Ю.	× CBL	NS E) と	010 E L	LIQUID	PLASTIC LIMIT	E E E E E E	S S S
				SAI	RE		6	DR	≥ö		Г	PLASTICITY INDEX	FINES CONTENT (%)
0	000	GRAVEL surface, existing.										_	-
-		Black silty SAND.											
-	-												
-	-												
-	-												
_ 5	-												
-	-												
-	-												
-	-												
-	-	$\overline{\Delta}$											
_ 10	-												
2-													
1.GPJ													
AE001													
01- 01- 01- 01- 01- 01- 01- 01- 01- 01-													
A A A													
NIB	711												
	711												
SAC	11												
		COBBLE.											
	O												
:53 -	P												
16 09													
12/6/	-20												
25													
₽ <u>25</u>	-20												
B 20													
	-20												
Ĕ	×												
GINTS	X												
ອ <u>30</u>	9												
Х М П	X												
COL	10												
HBH	<u>y</u>												
	K												
35													

		HULL	Iull & Associates, Inc. Hemishpere Way Bedford, Ohio 44146 elephone (440) 232-9945 Fax (440) 232-9946				B	OR	ING	i NU	JME		BH ≣ 1 0	
CLIE	NT La	ke Erie Energy Developmen	Corporation (LEEDCo)	PROJEC	T NAME	Icebr	eaker Offs	hore W	/ind P	roject				
PRO	JECT N	UMBER LAE001		PROJEC	T LOCAT		Former CP	P Fac	ility an	d CDF	= 12, C	Clevela	and, Ol	hio
DAT	E STAR	TED 10/24/16 C	OMPLETED 10/25/16	GROUNI			581 ft							
DRIL	LING C	ONTRACTOR HAD		GROUNI	WATER	LEVE	LS:							
RIG		Mobile EQ002 DRILLING	METHOD _3.25" Hollow Stem A	uger 🖓 AT	TIME OF	DRIL	LING 12.0))) ft / E	Elev 56	69.00 t	ft			
LOG	GED B	A. Prvanovic C	HECKED BY S. McGee	TA	END OF	DRILL	.ING							
coo	RDINA	TES 41.527152,-81.661831		AF	TER DRI	LLING								
					Щ	%		ż	<u>⊢</u> .	(9)	ATT		RG	LN NT
Ξ	GRAPHIC LOG				SAMPLE TYPE NUMBER	RECOVERY ((RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	ENE ()			Σ	FINES CONTENT (%)
DEPTH (ft)	LOG API	MATE	RIAL DESCRIPTION		MB	ZQE		(tsf)	Def	IEN	9 ⊑	PLASTIC LIMIT	PLASTICITY INDEX	00%
	9.08				AMF	EC(^m O ₂	ÖÖ	RY	Q NO	l₫₹	LIV	AST	IES
0					Ś	R		<u>م</u>		0		<u>م</u>	Ч	∠∟ ⊥
		FILL: Medium dense, da slag fragments, moist.	rk brown silty SAND, few gravel	coal and										
_		siag fragments, moist.			🛛 ss	100	8-6-7	0.75	1	12.0				
-					1	100	001	0.10	1					
-									-					
5			brown SILT, some sand, few gra	vel, coal	SS 2	87	3-4-2	0.5		24.9				
- Ŭ		and slag fragments.	brown SILT, some sand, few gra											
-		and slag fragments, wet	-		∕ ss	07	5-2-22	1		26.0				
-		FILL: Medium dense, da	rk brown silty SAND, few organi	cs, wet.	3	87	J-Z-ZZ	_		26.0				
-	-							_						
+		FILL: Loose, brown SAN	D, few silt and gravel, wet.			47	3-1-6			14.0				
_ 10	-888							-						
- -	-	FILL: Very loose, brown	SAND, few silt and gravel, wet.		∕∕ ss			-						
0.100		⊻ ,,	- , - - - - - - -		5	0	1-1-1							
	-													
- 22	-	FILL: Very loose, dark bi gravel, wet.	own to black SAND, trace silt a	nd fine		13	WOH-1			34.5				
<u>7</u> 15	-888	graver, wet.						-						
	-													
	-													
ACT														
- NTS	-				SS 7	53	2-2-1	0	1	17.5				
- 12/6/16 09:55 - F:/CLENTSACTIVE/GIN	-888				7				1					
н 	-													
- 09:5	-													
- 1	-													
			gravelly SAND, sandstone fragn	nents,	⊠ ss	100	50/3.6	1		26.5				
<u>.</u> 25	-888	wet.			8									
1 2017	-													
GEOTECH BH COLUMNS - GNT STD US LAB 2014 (GD) 		FILL: Very dense. dark b	rown sandy GRAVEL, wet.		√ ss			-						
20 30		FILL: SANDSTONE frag	ments.	/	9	67	5-2-50/6			15.8				
MNS			rown sandy GRAVEL, wet.											
BHC														
ECH		Modium donas, blast Of	ND some fine groupt wat					-						
E 5 35		Medium dense, black SA	ND, some fine gravel, wet.			100	7-7-7			22.8				
	1. 1. 1. 1.	medium dense, gray Silly	UNID. WEL		<u>v</u> v -			1		I	L		L	

(Continued Next Page)

BORING NUMBER BH-1

PAGE 2 OF 3

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

PROJ	ECT NU	IMBER LAE001	PROJECT LOC	ATION	Former CF	PP Fac	ility an	d CDF	⁻ 12, C	Clevela	and, O	hio
			Ш	%		ż	Ŀ.	(%	AT	LIMIT:	ERG S	ΞNΤ
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT
35		Medium dense, gray silty SAND, wet. (continued)									-	
			s	S 67	4-3-4	0.5	-	31.6	27	19	8	
		Medium stiff, gray-brown lean CLAY, wet.	∆ 1 S	1 07 T 100	4-3-4	0.5	-	51.0	21	19	0	
		Soft, gray-brown lean CLAY, wet. (CL)		S 400		0.05	-	07.4	10		10	
<u>45</u> 				S ₂ 100	1-1-1	0.25		37.4	40	22	18	
50		Medium stiff, gray-brpwn silty CLAY, wet.	S 1		2-3-3	0.25	_	25.4				_
 			S	100 <u>2</u>	-				35	18	17	
 _ <u>55</u> 		Stiff, gray-brown lean CLAY, wet.		S 100	3-4-6	0.25		28.4	38	23	15	
<u>60</u> 		Medium stiff, gray-brown lean CLAY, wet.	S 1	S 100	4-4-3	0.25	-	26.0				-
65		Stiff, gray-brown lean CLAY, wet.	S 1	S ₆ 100	3-7-7	0.25	-	28.4				-
70		Medium stiff to stiff, gray-brown lean CLAY, wet.	s s		5-3-3	0.25	-	27.5				
· _			S	100	_				38	18	20	
75		Loose, gray-brown clayey SAND, wet.	S	S 8 100	4-5-5	0.25		27.5				

BORING NUMBER BH-1

PAGE 3 OF 3

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

	TNUMBER LAE001	PROJECT LOCATION Former CPP Facility and CDF 12, Cleveland, Ohio
52 DEPTH (ft) GRAPHIC	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER RECOVERY % (RQD) (RQD) (SOUNTS (N VALUE) (SCOUTS) (N VALUE) (ST) (ST) (ST) (ST) (ST) (ST) (ST) (ST
	Loose, gray-brown clayey SAND, wet. (continued)	
	Stiff, gray-brown sandy SILT, some clay, wet.	SS 19 100 4-6-7 0.25 28.3
 	Medium stiff, gray-brown lean CLAY, wet.	SS 20 100 4-4-4 0.25 28.8
 	Stiff, gray-brown sandy lean CLAY, wet.	SS 21 100 4-5-5 0.25 26.3
 		SS 22 100 3-4-5 0.25 27.7
		SS 23 100 5-5-5 0.25 25.8

Bottom of borehole at 100 feet.

			HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946					B	OR	ING	5 NU	JME		E 1 0	
C	LIEN	NT La	ake Erie Energy Developme	nt Corporation (LEEDCo)	PRO	JEC		E Iceb	reaker Offsl	nore V	/ind P	roject				
F	ROJ		IUMBER LAE001		_ PRO	JEC			Former CP	P Fac	ility ar	d CDF	⁼ 12, C	Clevela	and, O	hio
	DATE	STAF	RTED 10/20/16	COMPLETED 10/20/16	GRO	UND	ELEV	ATION	581 ft							
	RILI	ING C	ONTRACTOR HAD		GRO	UND	WATE	RLEV	ELS:							
F	RIG T		Mobile EQ002 DRILLING	METHOD 3.25" Hollow Stem A	Auger	AT	TIME (of Drii	LING							
L	.OGC	SED B	Y J. Mielecki	CHECKED BY S. McGee		AT	END C	FDRIL	LING							
c	OOF	RDINA	TES 41.527080,-81.66175	5	_	AF	rer di	RILLING	i							
							ш	%		;	<u> </u>		ATT	ERBE		NT
	E	₽					SAMPLE TYPE NUMBER	ا کر	S L L L S L	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				CONTENT (%)
	UEPIN (ff)	GRAPHIC LOG	MAT	ERIAL DESCRIPTION			, MBF	RECOVERY 6 (RQD)	BLOW COUNTS (N VALUE)	(ET	LINI pcf)	STL	≘⊢	PLASTIC LIMIT	PLASTICITY INDEX	S (%)
	Ξ	GR L					NUN		SC ^B	Š.	ירו אר	ION	βΞ	LAS	AST	FINES
	0						ſS	교		۲ ۲	ā	- ŏ		<u>م</u>	5	LIN I
	-			prown and black SAND, some gra	avel, clay	/										
-	-		and silt, few coal fragn	ients, moist.		2		³ 100	10-9-8-5			13.4				
-	-			y SAND, some coal and cinder fi	ragments	S,	V ss									-
-	5		moist.				2		4-3-3-2			29.9				
-	-	ł	Fill I Madium danaa k	lack, silty SAND, moist.												-
-	-		FILL: Medium dense C			_/			32-12-3-2	-		14.9				
F	-		FILL: Medium stiff, bro	wn, sandy lean CLAY, some gra	vel, trace	,			4-3-50/6			19.1				
\vdash	10		FILL: Very dense, brow	n SANDSTONE fragments, moi	st.	_ (4			-						-
PROJECTS/LAE001.GPJ	-		(possible gravel dike w	all)			. /			-						
	- 15		sand, wet. (possible gr	avel dike wall)	ciay anu		X 5	60	23-25-26-4			12.9				
- 12/6/16 09:53 - F:\CLIENTS\ACTIVE\GINT\PRC	-			04115			/			-						
	- 20		wet. (possible gravel d	prown SAND, some gravel, fine g ke wall)	jrained,	\square			1-3-25- 50/3			17.4				
	20			an LIMESTONE fragments, wet.	(possibl	e	/ \ •		00/0							-
6/16 09:53 - 1 1 1	-		gravel dike wall)													
	-			LIMESTONE fragments, wet. (p	ossible		imes se	6 45	45-50/2			11.6				-
GD1			gravel dike wall)	inot			7									
GEOTECH BH COLUMNS - GINT STD US LAB 2014.GDT			Auger refusal at 24.2 Bottom of borehole at													
GEOI																

			HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				В	OR	ING	5 NU	JME		. BH ≞ 1 0	
	CLIEN	NT La	ke Erie Energy Developme	nt Corporation (LEEDCo)	PROJEC	T NAME	Icebr	eaker Offsh	nore W	/ind P	roject				
	PROJ	ECT N	UMBER LAE001		PROJEC	T LOCAT		Former CP	P Faci	lity an	d CDF	= 12, C	levela	ind, Oł	hio
	DATE	STAR	TED 10/20/16	COMPLETED 10/20/16	GROUNE	ELEVA		581 ft							
	DRILL		ONTRACTOR HAD		GROUNE	WATER		LS:							
	RIG T	YPE	Mobile EQ002 DRILLING	METHOD _3.25" Hollow Stem Au	iger AT			LING							
	LOGO	ED B	Y J. Mielecki	CHECKED BY S. McGee				_ING							
			TES _41.527091,-81.66186			TER DRI									
		0				Ш	%			ΥT.	ы (%)	ATT		3	ENT
	o DEPTH (ft)	GRAPHIC LOG	MAT	ERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
			FILL: GRAVEL surface	e, existing.											
			FILL: Dense, brown, si fragments, moist.	lty SAND, some gravel, few brick a	and coal	ss 1	100	7-17-20-20			9.0				
			FILL: Stiff, gray, lean S	ILT, moist.		SS 2	75	5-3-11-14			36.7				
			− FILL: Medium dense, ç ∫ fragments, moist.	ray to tan, GRAVEL consisting of	limestone_	SS 3	85	2-11-14-13			30.5				
			- FILL: Medium dense, r	ed-brown, SAND, some slag, mois								-			
AE001.GPJ	<u>10</u>		moist.	black, lean SILT, trace angular gr	avei,	SS 4	90	1-10-15-13			26.5	-			
ROJECTS/L/	 _ <u>15</u>		FILL: Very loose, black recovery.	, silty SAND, some gravel, moist,	poor	SS 5	7	1-2-2			12.6	-			
ACTIVE/GINT/P															
INTS				k, SAND, coarse, angular, wet.			45	24-50/2			14.1]			
- 12/6/16 09:53 - F:\CLIENTS\ACTIVE\GINT	<u>20</u> 		FILL: Very dense, whit limestone fragments, v	e, GRAVEL comprised of weathere	ea										
				lack SAND, fine grained, wet.		V ss	67	4-16-10			15.6	1			
4.GD	_ 25			white SAND, fine grained, wet.		7					10.0	-			
D US LAB 201			wet.	RAVEL comprised of limestone fra	agments,										
INT STL			NO RECOVERY.			≍ ss	0	50/3							
GEOTECH BH COLUMNS - GINT STD US LAB 2014.GDT	<u>30</u> 					8									
ECHE			Very stiff, gray, lean Sl	IT non-plastic moiet											
GEOI	35	1	very sun, gray, leart St			SS 9	67	9-9-9			24.1	NP	NP	NP	

BORING NUMBER BH-3

PAGE 2 OF 2

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

		JMBER LAE001		%						TERBE		
(H) (H) 35	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY 9 (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID			FINES CONTENT
-		Very stiff, gray, lean CLAY, moist. (CL)	ST 1	100					27	19	8	-
40 -		Stiff, gray, lean CLAY, trace gravel, moist.	SS 10 ST 2	100 75	2-4-7	-		27.8				-
- - <u>45</u> -		Very soft, gray, lean CLAY, moist.	SS 11 ST 3	100 100	0-0-0	-		35.8	45	24	21	-
- 50 -		Soft, gray, lean CLAY, moist.	SS 12	100	2-2-2	-		28.4				-
- 		Medium stiff, gray, lean CLAY, moist.	SS 13 ST 4	100	2-3-3	-		27.9	27	17	10	-
- - 60			4 	100	2-4-4	-		28.7	37	22	15	-
		Bottom of borehole at 60 feet.										

		HULL 4 Hen Bedfo Telepi	Associates, Inc. nishpere Way rd, Ohio 44146 hone (440) 232-9945 I40) 232-9946				В	OR	ING				BH 1 0	
CLI		ake Erie Energy Development Corp	poration (LEEDCo)	PROJEC	T NAME	Iceb	reaker Offst	nore W	/ind Pi	roject				
PR	OJECT	NUMBER LAE001	F	PROJEC	T LOCA		Former CP	P Fac	lity an	d CDF	⁼ 12, C	levela	nd, Oł	nio
DA	TE STA	RTED 10/20/16 COMP	LETED 10/20/16	GROUNE	ELEVA	TION	582 ft							
DR	ILLING	CONTRACTOR HAD		GROUNE	WATE	R LEVE	LS:							
RIG	TYPE	Mobile EQ002 DRILLING METH	IOD 3.25" Hollow Stem Auge	er AT	TIME O	F DRIL	LING							
LO	GGED E	Y J. Mielecki CHEC	KED BY S. McGee	AT	END OF	DRIL	_ING							
co	ORDINA	TES 41.526981,-81.661705		${ar \Psi}$ af	TER DR	ILLING	i _10.04 ft /	Elev 5	570.96	ft				
DEPTH	(it) GRAPHIC LOG	MATERIAL	DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT			FINES CONTENT (%)
0					S	L CC		ш.		0			Ч	Ē
-		FILL: Hard, black, lean SILT, and gravel, moist.	some sand, coal fragments, c	lay,	ss 1	90	15-17-17- 15							
- 5		FILL: Medium dense, black ar and coal fragments, moist.	nd brown gravelly SAND, som	e silt	SS 2	75	1-3-11-40							
-		FILL: Loose, black and brown fragments, moist. FILL: Stiff, gray, lean CLAY, fi	ew coal fragments, moist.	coal	SS 3	100	4-5-4-5							
		FILL: Stiff, gray, lean CLAY, f												
10		FILL: Very stiff, black, lean, sa ⊈	andy SIL I, moist.		SS 4	100	4-8-12-12							
		FILL: Medium stiff, silty, sand	y CLAY, few clay tile fragment	s, wet.	ss 5	50	3-3-4-4							
		FILL: Very loose SAND, some wood fragments, wet [FILL].	e gravel and brick fragments. t	race	SS 6	5	1-1-1-1							
		FILL: Very dense SAND, wet			≍ ss	100	50/5							
		FILL: Very dense CONCRET												
	, -	FILL: Medium dense, black SA				80	2-20-5							
25 		Bottom of borehole at 30 feet.			/ \ U	<u> </u>	1	<u> </u>						

		HUIL & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				B	OR	ING	5 NU	JME		E 1 0	
CLIE	ENT La	ke Erie Energy Development Corporation (LEEDCo)	PROJE		Iceb	reaker Offsl	hore V	Vind P	roject				
					_	Former CP	P Fac	ility ar	nd CDI	F 12, C	Clevela	and, O	hio
		TED _10/19/16 COMPLETED _10/19/16											
				D WATE									
	-	Mobile EQ002 DRILLING METHOD 3.25" Hollow Stem Aug				LING							
		CHECKED BY S. McGee				LING							
		TES _41.526988,-81.661845	A			i		1		ΔT	FERBE		
o DEPTH	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
		FILL: Dense, black SAND, some coal fragments, clay, and	l gravel,										
-		moist.		ss 1	75	17-15-27- 27	-						-
- 5	-	FILL: Hard, black SILT, some sand and coal fragments, m	oist.	SS 2	90	2-7-26-26	-						-
-		FILL: Loose, black, silty SAND, fine grained, moist.		SS 3	100	1-2-4-5							
_ 10	-	FILL: Stiff, black SILT, trace fine sand and coal fragments,	wet.	ss 4	90	2-2-10-15							
	-						_						_
15	-	FILL: Very loose, black, gravelly SAND, poor recovery.		SS 5	5	0-0-0-1	-						-
		FILL: Medium dense, black, silty SAND, fine grained, some	e coarse				-						-
20	-	sand, wet.		SS 6	85	3-2-9-30	-						-
		FILL: Very dense, gray and black, gravelly SAND, wet.					-						-
				SS 7	73	14-40-26	-						
30		FILL: Loose, gray to brown, SAND, fine grained, wet.		SS 8	100	5-4-5	-						
		Bottom of borehole at 30 feet.											

		HUII & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946			B	OR	ING	S NU	JME		BH ≣ 1 0	
CLIE	NT La	ke Erie Energy Development Corporation (LEEDCo) PRO	JECT NAM	E lceb	reaker Offsl	nore V	/ind P	roject				
					Former CP	P Fac	ility ar	nd CDF	⁻ 12, C	Clevela	ind, Ol	hio
		TED 10/19/16 COMPLETED 10/19/16 GRO										
		Mobile EQ002 DRILLING METHOD 3.25" Hollow Stem Auger			_LING							
		ſ_J. Mielecki CHECKED BY S. McGee IFES _41.527040,-81.661939 ⊥			LING G _6.50 ft / E			F+				
					<u>0.00 lt / L</u>				ATT	FERBE	RG	
o DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (ROD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT			FINES CONTENT (%)
		FILL: Stiff, black and brown, sandy lean CLAY, some cinders an	nd									
-		coal fragments, moist.			11-7-8-7	-		18.2				
- _ 5	-	FILL: Hard, black SILT, moist.		S 95	14-23-15- 17			36.5				
-		FILL: Very stiff, black SILT, moist. FILL: Very stiff, black sandy SILT, wet. FILL: Medium dense, gray CONCRETE fragments.			2-16-12-3			41.7				
_ 10	-	FILL: Soft, black, sandy SILT, wet.	S:		2-2-2-2			35.0				
	-	FILL: Loose, gray, gravelly SAND, some silt, wet.	Si Si	S 75	2-4-4-3			31.1				-
20		FILL: Very loose, black, gravelly SAND, wet.	S: 6	S 15	0-0-0-1			20.7				
	-											
25		FILL: Very dense, black, silty SAND, wet. FILL: Very dense SANDSTONE fragments, wet.		S 71	23-22-50/5	-		21.3				
- -		FILL: Very dense COBBLES, wet.										
		Bottom of borehole at 28.5 feet.										

ų

		HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946					В	OR	ING	i NU	JME	BER PAGE	. BH ∃ 1 0	
CLIEI	NT La	ke Erie Energy Developn	nent Corporation (LEEDCo)								-				
				_			_	Former CP	P Fac	ility an	d CDF	= 12, C	levela	ind, Ol	hio
		CIED <u>10/19/16</u> CONTRACTOR HAD	COMPLETED <u>10/19/16</u>	GROUNI GROUNI											
			IG METHOD _3.25" Hollow Stem A	_					tt/Fl	ev 57	5 62 ft				
	_		CHECKED BY S. McGee												
		TES 41.527024,-81.6620			TER	DRILI	LING								
					ш	:	%		ź	<u>г</u> .	()	ATT			LN
DEPTH (ft)	GRAPHIC LOG	MA	TERIAL DESCRIPTION		SAMPLE TYPE	NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID			FINES CONTENT (%)
0	XXXX	FILL Hard black cla	yey SAND, with gravel and coal fra	aments	0,		-		-					⊒	ш
		moist.		ginents,		SS 1	100	9-16-16-20			13.8				
		FILL: Stiff, black SIL	۲, moist.		×	SS 2	90	7-7-6-5			33.0				
			ck silty SAND, with gravel, wet.			SS 3	98	1-1-1-50/4							
		FILL: LIMESTONE, g	ray, wet.				100	50/0							
		FILL: LIMESTONE, g	ray.			SS	100	50/3							
15 <u>15</u>		FILL: Soft, gray lean	CLAY, with gravel, wet.			SS 5	15	0-0-0-2			19.2				
20		FILL: Very loose, bla	ck SAND, some wood, wet.		×	SS 6	5	1-1-1-1			32.1				
					<u>v 1</u>										
		FILL: Medium dense,	black SAND, some gravel, wet.		×	SS 7	33	10-8-7							
 		FILL: Very Loose, bla	ck silty SAND, with wood, wet.		X :	SS 8	80	2-2-2							
		Bottom of borehole a	t 30 feet.		<u>v N</u>	-		1	1	1	1	1	1	<u> </u>	<u>I</u>

			HUII & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946					В	OR	ING	5 NU	JME	BER Page		
С		IT La	ake Erie Energy Development Corporation (LEEDCo)	PROJEC		ME _	Icebr	eaker Offsh	nore W	/ind P	roject				
P	roj	ECT N	UMBER LAE001	PROJEC	T LO	CATIO	ON _	Former CP	P Faci	lity ar	nd CDF	⁻ 12, C	levela	nd, Ol	hio
D	ATE	STAR	COMPLETED 10/19/16 COMPLETED 10/19/16	GROUN	D ELE	VATI		582 ft							
D	RILL	ING C	CONTRACTOR HAD	GROUN	O WA	TER I	LEVE	LS:							
RI	IG T	YPE _	Mobile EQ002 DRILLING METHOD 3.25" Hollow Stem A	uger 🖓 AT	TIME	E OF I	DRILI	LING _7.30	ft / El	ev 57	4.70 ft				
LC	OGG	ED B	Y J. Mielecki CHECKED BY S. McGee	A1	END	OF	ORILL	.ING							
c	OOF	RDINA ⁻	TES 41.526915,-81.661903	AF	TER	DRILI	LING								
					ш		%			. ·		ATT	ERBE	RG	F
		<u>ප</u>			SAMPLE TYPE	<u>к</u>	۲۶) (_s le	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)		LIMITS	, ,	FINES CONTENT (%)
L L L	(#)	GRAPHIC LOG	MATERIAL DESCRIPTION		Ē	MBE	(RQD)	BLOW COUNTS (N VALUE)	ET tsf)	pcf)	EN	₽⊢	PLASTIC LIMIT	ΩЩ	NO(%)
۱ä	5	GR GR			MP		ECO (F		Х°	ר) גל	NO T	E ^I O	AS	NDE	ES (
	0				SA		RE	Ŭ	д	Б	20		2	PLASTICITY INDEX	ЫN
	~		FILL: Very dense, black silty SAND, with cinder and coa	I											
-	-		fragments, moist.			ss		20-26-28-							
F	-					1	90	20-20-20-			14.8				
F	-		FILL: Very dense, black and brown clayey SAND, coal fi	agnests		_									
F.	- 5		FILL: Very dense, black and brown clayey SAND, coal fi	agments.		ss 2	100	5-33-23-15							
	5_				\square	2									
F	-														
F	-		$\overline{\Delta}$												
-	_														
F.	- 10		FILL: COAL fragments. FILL: Stiff, dark gray SILT, moist.]/ :	ss	90	3-3-8-17							
-	10		FILL: Medium dense, black sandy GRAVEL, coal fragme	ents. wet.	\square	3									
GP-	_														
-100	-														
- IR	-														
	-		FILL: Stiff, black SILT, moist. FILL: Medium dense, black gravelly SAND, with wood, v		1/ :	ss	50	6-4-8-3			27.7				
	15_				\square	4									
	_														
Ш- N	-														
	-														
- 12/6/16 09:53 - F:\CLIENTS\ACTIVE\GIN	20		FILL: Very loose, black sand, some gravel, wet.		\mathbb{N}	SS 5	5	0-0-0-0			46.9				
	20				Δ	5	-								
- 23 -	-														
16 09	-														
12/6/	_														
	-		FILL: Very soft, black SILT, wet.		X	SS	100	0-0-0							
214.G	25 _					-									
ABZ	_														
	-														
	-														
	-				\mathbb{N}	SS 7	100	0-0-1							
Sal 3	30 _		FILL: Very soft, black SILT, trace sand, wet.		ᡟ᠋	1									
	-														
ы 1 1	-														
SEOTECH BH COLUMNS - GINT STD US LAB 2014. GDT	-														
	-		Very loose, black silty SAND, wet.		\mathbb{N}	SS 8	47	0-1-1							
5 <u></u> 3	35				VΝ	0									

BORING NUMBER BH-8

PAGE 2 OF 2

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

PRO	JECT N	UMBER LAE001	PROJEC	T LOCAT	ION _	Former CP	P Faci	lity an	d CDF	⁻ 12, C	levela	nd, Ol	hio
HL 35	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
-		Very loose, black silty SAND, wet. (continued)											
- 40		Medium stiff, gray lean CLAY, moist.		SS 9	33	3-2-3							

Bottom of borehole at 40 feet.

		HUIL & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				В	OR	ING	i NU	JME		. BH ∃ 1 0	
CLIE	NT La	ke Erie Energy Development Corporation (LEEDCo)	PROJEC	T NAME	Icebr	eaker Offsl	nore W	/ind P	roject				
PRO.	JECT N	UMBER LAE001	PROJEC			Former CP	P Fac	ility an	d CDF	⁼ 12, C	Clevela	ind, Ol	hio
DATE	STAR	TED <u>10/18/16</u> COMPLETED <u>10/18/16</u>	GROUNI	D ELEVA		582 ft							
DRIL		ONTRACTOR HAD	GROUNI	WATEF		LS:							
RIG 1		Mobile EQ002 DRILLING METHOD _3.25" Hollow Stem Auge	er ⊻AT		DRIL	LING 11.3	85 ft / E	Elev 5	70.65	ft			
LOG	GED B	J. Mielecki CHECKED BY S. McGee	AT	END OF	DRILI	_ING							
coo	RDINA	ES <u>41.526649,-81.662217</u>	AF	TER DRI	LLING								
				ш	%		<u> </u>						Ч
I I	₽			SAMPLE TYPE NUMBER	ار م	_s LES_<	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		MBE	RECOVERY ((RQD)	BLOW COUNTS (N VALUE)	(tsf)	bcf)	STU EN	≘⊢	PLASTIC LIMIT	PLASTICITY INDEX	бу %
ā	GR			NUN			Š	ר) גל	NO NO	μĒ	LAS	ASTICI INDEX	S
0				l'S	R.		۲ ۲	ä	- ö	_		5_	N
Ű		ASPHALT surface, existing.											
		FILL: Stiff, black sandy SILT, with coal fragments, moist.		V ss	100	10-5-4-6			22.0				
				1		10-3-4-0			22.0				
		FILL Mading data 11 - 0100 - 11											
5		FILL: Medium dense, red-brown clayey SAND, with gravel a brick fragments, moist.	ana		75	2-3-12-15			14.4				
				∭ ss	90	12-3-5-7			21.9				
		FILL: Medium stiff, gray sandy CLAY, with gravel, moist.		3		12-0-0-7			21.5				
L .		FILL: Medium stiff, gray lean CLAY, moist.											
_ 10					100	2-3-3-4			26.2	35	21	14	
		∇		<u> </u>									
1.6P		<u>×</u>											
AEOC													
15 DEC		FILL: Loose, black, well-graded GRAVEL with sand, some I	brick	SS 5	90	2-2-5-5							
≤L .		fragments, wet. (GW)		<u> </u>									
≥ 													
				1 00									
20				SS 6	10	1-2-1-1			39.0				
- 12/6/16 09:55 - F:/CLENTSACTIVE/GIN				<u> </u>									
1 .													
1													
		FILL: Very loose, black sandy GRAVEL, with brick fragmen	ts.	SS 7	47	1-1-1							
¹ / ₂₅				/ 7		1-1-1							
B 201													
z ·		Soft, gray lean CLAY, moist.		SS 8	33	1-1-1			28.4	32	20	12	
ອ <u>30</u>				/\ 8		1-1-1			20.4		20		
25													
		Medium stiff, gray lean CLAY, moist.		SS 9	47	2-3-4	1						1
35	V/////			/\ 9	''	2-0-4							

BORING NUMBER BH-9

PAGE 2 OF 2

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME Icebreaker Offshore Wind Project

PROJ	ECT N	UMBER LAE001	PROJEC	T LOCAT		Former CP	P Fac	ility an	d CDF	⁼ 12, C	levela	nd, Ol	hio
HL (tt) 35	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
		Medium stiff, gray lean CLAY, moist. (continued)											
 _ <u>40</u> 		Soft, gray lean CLAY, moist.		SS 10	100	1-1-1							
 45		Soft, gray silty lean CLAY, moist.		SS 11	100	1-1-3							

Bottom of borehole at 45 feet.

			HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				BC	DRIN	1G	NUI	MBE		BH- ' ≞ 1 0	
	CLIEN	IT La	ke Erie Energy Developme	ent Corporation (LEEDCo)	PROJEC	T NAME	Iceb	reaker Offsh	nore W	/ind P	roject				
	PROJ	ECT N	UMBER LAE001		PROJEC			Former CP	P Faci	lity an	d CDF	= 12, C	Clevela	ind, Ol	hio
	DATE	STAR	TED 10/18/16	COMPLETED 10/18/16	GROUN	D ELEVA		584 ft							
	DRILL	ING C	ONTRACTOR HAD		GROUN			ELS:							
	RIG T	YPE	Mobile EQ002 DRILLING	G METHOD _3.25" Hollow Stem A	uger 🛛 🗛			LING 10.9	3 ft / E	Elev 5	73.07 1	ft			
	LOGO	ED B	/ J. Mielecki	CHECKED BY S. McGee	AT	END OF	DRILI	LING							
			TES 41.526479,-81.6621			TER DRI	LLING	·							
ł					_							AT1	FERBE	RG	⊢
	_	υ				SAMPLE TYPE NUMBER	× %	ر ش	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	<u> </u>		3	FINES CONTENT (%)
	DEPTH (ft)	GRAPHIC LOG	ΜΔΤ	FERIAL DESCRIPTION		E T BEI	RECOVERY ((RQD)	BLOW COUNTS (N VALUE)	Ц Ц	£ €	ΪΞ̈́Ξ		<u>0</u> ,	PLASTICITY INDEX	NO (@
	DEI	LC					No.	K C B	К Щ	59	NTE	N	PLASTIC LIMIT	ASTICI	ပင္ရ
						SAN	RE	02	Q Q	DR	≥ö		27	۲¥	INE
ł	0	XXXX	FILL Medium stiff bla	ck SILT, with gravel, coal fragmer	its moist									<u> </u>	ш
					10, 110131.										
							75	8-5-3-5			14.3				
			FILL: Loose, brown, w	ell graded SAND with silt, some g	ravel, coal	V ss									
	5		fragments, moist. (SW	/-SM)			50	3-3-3-3			14.1	NP	NP	NP	
			FILL: Medium dense, I fragments, moist.	brown silty SAND, some gravel, co	bal	V ss	an	3-10-13-13							
	_		hagmonto, molot.			3		5-10-15-15							
			FILL Dense brown cla	ayey SAND, with glass and coal fr	agments										
	10		moist.		ag,		100	6-9-23-20							
			∇												
GP.			<u></u>												
E001															
SILA															
L L L	 15		FILL: LOOSE, DIACK-TO-I	brown silty SAND, with gravel, wet			90	6-5-4-6							
0 2 2 2						5									
NE/															
AC															
z			FILL: Very loose, black	k silty SAND, with gravel, wet.		V ss	100	1-1-1-1							
2	20					6	100	1-1-1-1							
4															
9:60															
/6/16															
-			FILL: Very loose, GRA	VEL, with sand, wet.		SS 7	27	2-2-2			17.1				
9.9	25					7	21	2-2-2			17.1				
2012															
20 05															
S	_		FILL Medium dense	black SAND, with gravel, brick frag	oments	∬ ss									
219 -	30		wet.	olaoli, ola 12, illa glatol, oloit ila	je.,	8	80	3-6-8							
NNS															
BHC															
Н			Coff group all OLAY	maint											
<u>i</u>	 25		Soft, gray silty CLAY,	moist.			67	0-2-3							
١٢	55	MMM				v v -	1	Į			1		1	L	

			HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				BC	DRI	NG	NUI	MBE		BH- ≣ 1 0	
	CLIEN	IT La	ke Erie Energy Developm	ent Corporation (LEEDCo)	PROJEC	t name	Iceb	reaker Offsl	nore W	/ind P	roject				
	PROJ	ECT N	UMBER LAE001		PROJEC	T LOCA		Former CP	P Fac	ility ar	nd CDF	= 12, C	Clevela	ind, Ol	hio
	DATE	STAR	TED 10/18/16	COMPLETED 10/18/16	GROUNE) ELEV	TION	582 ft							
	DRILL	ING C	ONTRACTOR HAD		GROUNE	WATE	R LEVE	LS:							
	RIG T	YPE _	Mobile EQ002 DRILLIN	G METHOD 3.25" Hollow Stem A	uger 🛛 AT	TIME C	F DRIL	LING 9.27	′ft / El	ev 57	2.73 ft				
	LOGO	ED BY	J. Mielecki	CHECKED BY S. McGee	AT	END O	F DRILI	_ING							
	COOF	RDINAT	ES 41.526532,-81.6623	36	AF	TER DF	ILLING	i							
	o DEPTH (ft)	GRAPHIC LOG		TERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT	PLASTIC PLASTIC LIMIT LIMIT		FINES CONTENT (%)
			FILL: Medium dense,	clayey SAND, with gravel.		ss 1	100	17-9-13-7							
	5		FILL: Stiff, black SILT	, with cinders and coal, some grav	el, moist.	ss 2	60	7-4-10-7			11.4				
			FILL: Loose, red-brov	<i>n</i> gravelly SAND, some clay, mois	t.	ss 3	85	2-3-4-6							
			– _ moist.	brown-black clayey SAND, with grabon brown-black clayey SAND, with grabon brown-black clayey SAND, with grabon brown-black clayey states and the states of t		ss 4	75	4-7-7-5							
S\LAE001.GPJ	 														
GINT/PROJECT	 _ <u>15 _</u>		FILL: Medium dense,	black silty SAND, with gravel, mois	st.	ss 5	85	2-4-7-4			20.2				
TSVACTIVE			FILL: Verv loose. blad	k gravelly SAND, with brick fragme	ents. wet.	∕∕ ss									
4 - F:\CLIENTS\A			.,		,	6	60	2-1-3-1			34.8				
12/6/16 09:5				k SAND, some brick fragments, w	ot										
2014.GDT -	25		FILL: Very loose, blad	x SAND, some brick fragments, w	et.	SS 7	13	1-1-1			57.0				
STD US LAB															
IS - GINT	30		Soft, dark gray CLAY	, moist.			93	1-1-1							
CH BH COLUMNS															
GEOTE(35		Soft, gray, lean CLAY	′, moist.		ss 9	67	2-2-2							

BORING NUMBER BH-11

PAGE 2 OF 2

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

PROJ	ECT N	UMBER LAE001	PROJEC	T LOCAT		Former CP	P Fac	ility an	d CDF	⁻ 12, C	levela	nd, Ol	nio
HL (tt) 35	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)		MOISTURE CONTENT (%)	LIQUID LIMIT			FINES CONTENT (%)
 - 40 		Soft, gray, lean CLAY, moist. <i>(continued)</i> Very soft, gray, lean CLAY, moist.		SS 10	100	0-0-1							
 45		Medium stiff, gray, lean CLAY, moist.		SS 11	100	0-2-3			31.6	27	19	8	

Bottom of borehole at 45 feet.

			HULL	 Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946 				BC	DRIN	NG	NUI	MBE	ER E Page		
С	LIEN	IT La	ke Erie Energy Developn	ent Corporation (LEEDCo)	PROJEC	T NAME	Icebr	eaker Offst	nore W	/ind P	roject				
P	ROJ	ECT N	UMBER LAE001		PROJEC			Former CP	P Faci	ility an	d CDF	⁼ 12, C	levela	nd, Ol	hio
D	ATE	STAR	TED 10/17/16	COMPLETED 10/17/16	GROUN	D ELEVA	TION	583 ft							
D	RILL	ING C	ONTRACTOR HAD		GROUN	D WATEF	R LEVE	LS:							
R	IG T	YPE _	Mobile EQ002 DRILLIN	IG METHOD 3.25" Hollow Stem A	uger 🖾 🗛		DRIL	LING _11.2	3 ft / E	Elev 57	71.77	ft			
L	OGG	ED BY	J. Mielecki	CHECKED BY S. McGee	A		DRILI	_ING							
C	OOF	RDINAT	ES 41.526476,-81.662	534	AF	TER DRI	LLING								
		U				ЧРЕ	% ≻	α Ŵ	И Ш	WT.	КЕ (%)	ATT I	ERBE	5	TENT
	0 (#)	GRAPHIC LOG	MA	TERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY ((RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	PLASTICITY INDEX	FINES CONTENT (%)
-	-		FILL: Medium dense	black COAL, with ash and cinders,	moist.	V ss		27-10-13-							
-	-					1 1	95	12							
-	5_		FILL: Medium dense, with gravel, moist.	black SAND, with coal, some brow	n clay	SS 2	65	3-5-9-12							
-	_		FILL: Very stiff, red-b	rown CLAY, with sand and fine grav	vel, moist.	SS 3	90	2-8-11-10							
	-			CLAY, with gravel, moist.		V ss	100	2-6-8-6							
	10_		FILL: Medium dense, $\overline{\mathcal{V}}$	red-brown SAND, with gravel, mois	st.	4		2-0-0-0							
LAE001.G	_														
ECTS	-		\	to dense, brown SAND, with gravel	, wet.	S ss	75	4-16-34-12							
APR(<u>15</u>			Ity SAND, with gravel, moist. green SAND, with concrete and brid	/ :k	5		4-10-34-12							
	-														
	20		FILL: Very loose, bro	wn to black fine SAND, wet.		SS 6	15	1-2-1-1							
09:54 - F:	-					,									
T - 12/6/16 09:54	-		FILL: Very loose, bla	ck SAND, with gravel, wet.		SS 7	13	2-2-2							
2014.GD	25 _					7	13	2-2-2							
GEOTECH BH COLUMNS - GINT STD US LAB 2014. (BD	-														
- GINT SI	-					SS 8	33	1-2-1							
	_														
HBH (_														
	- 35		Soft, gray lean CLAY	, moist.		SS 9	67	2-2-1							

BORING NUMBER BH-12

PAGE 2 OF 2

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

PROJ		UMBER LAE001	PROJEC	T LOCAT		Former CP	P Fac	ility an	d CDF	⁻ 12, C	levela	nd, Ol	nio
HL (ff) 35	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
 - 40 		Soft, gray lean CLAY, moist. <i>(continued)</i>		SS 10 SS 11	100	2-1-2							

Bottom of borehole at 45 feet.

			HUIL & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				BC	DRII	NG	NUI	MBI		BH- E 1 0	
	CLIEN	NT La	ke Erie Energy Development Corporation (LEEDCo)	PROJEC	T NAME	Iceb	reaker Offs	hore V	Vind P	roject				
	PROJ	ECT N	UMBER LAE001	PROJEC	T LOCA		Former CP	P Fac	ility ar	nd CDF	= 12, 0	Clevela	and, O	hio
	DATE	STAR	TED 10/18/16 COMPLETED 10/18/16	GROUN			584 ft							
	DRILL		ONTRACTOR HAD	GROUN		R LEVE	ELS:							
	RIG T	YPE	Mobile EQ002 DRILLING METHOD _3.25" Hollow Stem A	uger 🛂 🗛		F DRIL	LING 7.32	2 ft / E	lev 57	6.68 ft				
			CHECKED BY S. McGee				LING							
					TER DR	ILLING	i							
ł				_							AT	TERBE	ERG	Γ
		U			SAMPLE TYPE NUMBER	× %	o ûi	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)			1	FINES CONTENT (%)
	DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		E T BEI	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	L 💭	ÊĘ			<u>∪</u> .	PLASTICITY INDEX	NO ()
	П Ц	LC	MATERIAL DESCRIPTION			No.	N N N	К Щ	50	NTE	LIQUID	PLASTIC LIMIT	E E E E E E E E	ပိ
		0			SAN	REC		DO	DR	₽Ö			Γ. Έ	Ш Ц
	0		FILL: Very stiff, brown to black sandy lean CLAY, some	gravol										ш
			moist.	yiavei,				-			-			-
						100	12-12-9-9			14.1				
		XXX						-			-			-
			FILL: Stiff, black sandy lean CLAY, with gravel, some co	al, moist.	V ss									-
	5					85	9-8-6-3							
			FILL: Medium dense, brown to black silty SAND, with cir \bigtriangledown some clay, some brick and glass, moist.	nders,	V ss	60	9-8-6-13							
			\underline{V} some day, some block and glass, most.		3		9-0-0-13							
			FILL: Very loose, brown to black silty SAND, with cinders	s some										-
	10		clay, some brick and glass, moist.	3, 30110		55	2-2-2-2							
ľ								-						-
GPJ														
E001														
S\LA						_		_						_
ECT			FILL: Very loose, black gravelly SAND, with brick fragme	ents, wet.	V ss	50	2-1-2-2							
PRO 0	15				5									_
ΓN/2														
NE/O														
ACT														
INTS					∭ ss	10	1-1-1-1							
F:\CLIENTS	20				6		1-1-1-1							
4 -]						
09:5														
2/6/16														
- -			FILL: Medium dense, black gravelly SAND, some brick f	ragments,	V ss	87	2-6-6	1						
2014.GD1	25		wet.		7	01	2-0-0	-						-
201														
SLAE														
э р														
IT S1			FILL: Loose, black fine SAND, with brick fragments, wet		∬ ss			-					<u> </u>	-
- GINT	30			-		67	3-3-3							
MNS]
OLU		\mathbb{X}												
BHC														
Ы		1XXX			<u> </u>			-					<u> </u>	-
E01	 35		FILL: Very loose, black fine SAND, with gravel, wet. Soft, gray lean CLAY, moist.			67	0-0-2							
<u>ا</u> ب	55	<u> </u>	··········		V N -	1			I	1	I	1	<u> </u>	1

			HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946					BC	DRII	NG	NUI	MBE	FR B PAGE		
	CLIE	NT La	ke Erie Energy Developn	nent Corporation (LEEDCo)	PRC	JECI		Icebr	eaker Offs	hore V	/ind P	roject				
	PRO.	JECT N	UMBER LAE001		PRC	JECI			Former CF	P Fac	ility ar	d CDF	= 12, C	levela	nd, O	hio
	DATE	E STAR	TED 10/28/16	COMPLETED 10/28/16	GRO	DUND	ELEVA [®]		577 ft							
	DRIL	LING C	ONTRACTOR HAD		GRO	DUND	WATER	LEVE	LS:							
	RIG 1		Mobile EQ002 DRILLIN	G METHOD 3.25" Hollow Stem A	uger	AT	TIME OF	DRIL	LING							
	LOG	GED B	D. Pratt	CHECKED BY S. McGee	_	AT	END OF	DRILL	_ING							
	cool	RDINA	TES _41.530286,-81.664	148	_	AF1	fer dri	LLING								
	DEPTH (ft)	GRAPHIC LOG	MA	ATERIAL DESCRIPTION			SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
GEOTECH BH COLUMNS - GINT STD US LAB 2014.GDT - 12/6/16 09:54 - F:\CLIENTS\ACTIVE\GINT\PROJECTS\LAE001.GPJ	$ \begin{array}{c} 0\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$		Black clayey SILT, tra Black, lean CLAY, tra Black, lean CLAY, tra Black, lean CLAY, sc	yey SILT, trace gravel, few sand, n ace gravel, few sand, moist. ace gravel, few sand, moist.	noist.		SAM	REO		POC	DRY	CONC		LIN		FINES
BEOTECH BH COLUMNS -	 	-	Black SILT, few sand	l, plastic, wet.												

BORING NUMBER BH-14

PAGE 2 OF 4

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

PROJECT NU				Former CP			-				hio
DEPTH (ft) GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT	PLASTIC LIMIT LIMIT		FINES CONTENT (%)
35 	Black SILT, few sand, plastic, wet. (continued)	0)								Ы	H
 40 45	Black SILT, some sand, trace gravel, wet.										
 <u>-</u> - <u>50</u> 											
 <u>55</u> 60											
	Dark brown-black SILT, trace sand and fine gravel, wet.										
 75	(Continued Next Page)										

BORING NUMBER BH-14

PAGE 3 OF 4

CLIENT Lake Erie Energy Development Corporation (LEEDCo)
PROJECT NUMBER LAE001

PROJECT NAME _ Icebreaker Offshore Wind Project

PROJECT LOCATION Former CPP Facility and CDF 12, Cleveland, Ohio

		JMBER LAE001 PROJEC			Former CP							
			Щ	%		ż	Т.	(%)	ATT		RG	INT
HI (t) (t) 75	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID	PLASTIC LIMIT	≻	FINES CONTENT
		Medium stiff, gray-brown, lean CLAY, trace gravel, wet. (CL)	SS 1	89	1-2-4			27.7	28	19	9	
- 80 												
85												
			ST	13								
90												
95												
		Medium stiff, gray, lean CLAY, wet. (CL)	SS 2	100	2-2-3			29.9	45	21	24	
- - 100 - - -												
- 1 <u>05</u> - - -												
<u>110</u>			ST 1	100					41	21	20	
			1						-+1		20	
115		(Continued Next Page)										

BORING NUMBER BH-14

PAGE 4 OF 4

		ke Erie Energy Development Corporation (LEEDCo) UMBER _LAE001			eaker Offsl Former CP				⁻ 12, C	levela	ind, Ol	
HLd∃Q 115	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
 120		Medium stiff, gray, lean CLAY, wet. (CL) (continued)	ST 2	0					37	20	17	

Bottom of borehole at 120 feet.

		HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946				BC	DRIN	NG	NUI	MBE		BH- ≞ 1 0	
CLIE	NT La	ke Erie Energy Developm	ent Corporation (LEEDCo)	PROJEC	T NAME	Iceb	eaker Offst	nore W	/ind P	roject				
PRO.	JECT N	UMBER LAE001		_ PROJEC			Former CP	P Fac	ility an	d CDF	= 12, C	Clevela	ind, O	hio
DATE	STAR	TED 10/17/16	COMPLETED 10/17/16	GROUN	D ELEVA		584 ft							
DRIL	LING C	ONTRACTOR HAD		GROUN			LS:							
RIG 1	YPE	Mobile EQ002 DRILLIN	G METHOD 3.25" Hollow Stem A	Auger ⊻ AT			LING 11.3	7 ft / E	Elev 5	72.63	ft			
LOG	GED B	J. Mielecki	CHECKED BY S. McGee	 AT	END OF	DRILI	_ING							
		ES _41.526088,-81.6627			TER DRI									
				_							ATT	TERBE	RG	
	0				SAMPLE TYPE NUMBER	Χ %	ر ش	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	I		3	FINES CONTENT (%)
DEPTH (ft)	GRAPHIC LOG					RECOVERY 9 (RQD)	BLOW COUNTS (N VALUE)	Ч	Ц Ц Э	ΠT		U.	PLASTICITY INDEX	
ЦЩ ^т)	LAN	WA	FERIAL DESCRIPTION		IPLI	N N N		Ж. Щ	٦٩	ISIN I	M T N	MIT	ASTICI	ပြစ်
	O				SAN	Ш Ш	υz	ğ	К К	₹Ö		PLASTIC LIMIT	NAS N N N N	Ü N
0			- ite OAND with a boundary			_			_	_				Ē
L .		FILL: Mealum dense,	silty SAND, with ash, moist.										L	-
					V ss	75	20-6-7-7			13.2				
					1	10	20071			10.2				
		FILL: Verv dense. gra	velly SAND, with cinders and ash	moist.	1									-
5			···; -···			90	8-24-30-28							
					<u> </u>									-
		FILL: Very stiff, SILT,	with cinders.		V ss	_								
- ·					3	5	8-10-10-10							
														-
10		FILL: LOOSE, red claye	y SAND, with gravel, moist.		V ss	50	2-3-2-2							
					4								<u> </u>	-
		$\overline{\Delta}$												
LAE														
		FILL: Very loose, red-	prown gravelly SAND, wet.		∭ ss	50	2-2-2-2							
<u>70 15</u>					5		2-2-2-2							
ž ·														
<u>б</u> 1														
NTS/														
<u>20</u>	-888		in to black poorly graded CAND.	with group										
4 		with glass fragments,	/n to black, poorly graded SAND v wet. (SP)	with gravel,		40	2-1-1-2			38.3			1	
09:52					0								L	-
6/16														
15														
25														-
2014.		FILL: Very loose, grav	elly SAND, wet.			27	1-1-2							
					<u> </u>									
SND													1	
TST													1	
	1000												1	
- SN		FILL: Loose, black gra	velly SAND, wet.		V ss	67	3-2-3							
	1000				8	0/	5-2-3						<u> </u>	-
Ŭ- ·													1	
													1	
	-888												1	
ö <u>35</u>														

BORING NUMBER BH-15

PAGE 2 OF 2

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

PROJ	ECT NI	JMBER LAE001	PROJEC	T LOCAT		Former CP	P Fac	ility an	d CDF	= 12, C	Clevela	nd, O	hio
HTHT (ff) 32	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)		LERBE LIMIT LIMIT		FINES CONTENT (%)
		Soft, gray silty lean CLAY, moist.		SS 9	80	1-2-1	_						-
 40		Soft, gray lean CLAY, moist.		SS 10	27	1-1-1	-						-

Bottom of borehole at 40 feet.

		HULL	Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946					BC	DRII	NG	NUI	MBI		BH- ≣ 1 C	
CLI	ENT La	ake Erie Energy Develop	ment Corporation (LEEDCo)	PRO	JECT I	NAME	Icebr	eaker Offs	hore V	Vind P	roject				
PR		UMBER LAE001		PRO	JECT I	LOCAT		Former CF	P Fac	ility ar	d CDF	= 12, C	Clevela	and, O	hio
DA	TE STAF	RTED 10/26/16	COMPLETED 10/27/16	GRO	UND E			577 ft							
DR	ILLING C	CONTRACTOR HAD		GRO	UND V	VATER	LEVE	LS:							
RIG		Mobile EQ002 DRILLI	NG METHOD 3.25" Hollow Stem /	Auger	AT TI	ME OF	DRIL	LING							
LO	GGED B	Y A. Prvanovic	CHECKED BY S. McGee	_	AT E	ND OF	DRILL	ING							
со	ORDINA	TES 41.528959,-81.663	3189		AFTE	R DRII	LLING								
o DEPTH	0	М	ATERIAL DESCRIPTION			SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT		3	FINES CONTENT (%)
OTECH BH COLUMNS - GINT STD US LAB 2014. GDT - 12/6/16 09:54 - F:/CLIENTSACTIVE/GINT/PROJECTS/LAE001. GPJ		Brown silty SAND, v Black clayey SAND. Loose, black clayey Soft, black lean CLA	SAND, wet.												
8 35	5 1////														

BORING NUMBER BH-16

PAGE 2 OF 4

CLIENT Lake Erie Energy Development Corporation (LEEDCo)
PROJECT NUMBER LAE001

PROJECT NAME _ Icebreaker Offshore Wind Project

PROJECT LOCATION Former CPP Facility and CDF 12, Cleveland, Ohio

PROJ	ECT NU	JMBER LAE001	PROJEC	LUCAI		Former CP	P Fac	inty an					110
				Щ	%		÷	<u>.</u> .	()	ATT		RG	Γ
DEPTH (ft)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY ((RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIQUID			FINES CONTENT (%)
35		Soft, black lean CLAY, wet. (continued)									_	ш.	ш
		Soft, black lean CLAY, wet. (continued)											
		_ Loose, brown SAND, some gravel, trace clay, wet.		ss 1	67	3-3-3	0.25		19.8				
 		Medium stiff, gray-brown, lean CLAY, wet. (CL)		<u> </u>			0.20		10.0				
				ST 1	100					35	19	16	
		Soft, gray-brown, lean CLAY, little sand, wet.		SS 2	100	2-2-2	-		28.4				
75													
		(Continued Next Page)											

Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946

BORING NUMBER BH-16

PAGE 3 OF 4

CLIENT Lake Erie Energy Development Corporation (LEEDCo)

PROJECT NAME _ Icebreaker Offshore Wind Project

		UMBER LAE001				Former CP			-	⁻ 12, C	levela	nd, Ol	hio
DEPTH (ff)	GRAPHIC LOG	MATERIAL DESCRIPTION		SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)	LIMIT LIMIT			FINES CONTENT (%)
<u>75</u> -	-	Soft, gray-brown, lean CLAY, little sand, wet. (continued)		ST 2	100					35	17	18	
- 80													
-	-	Loose, gray-brown clayey SAND, wet.	4	SS 3	100	3-2-3	0.25		33.0				
- 85													
_				ST 3	100								
- - 90													
	-	Medium stiff, gray-brown, lean CLAY, wet. (CL)	4	SS 4	100	2-3-3	0.25		30.7				
DJECTS/LAE0													
				ST 4	100					39	22	17	
09:54 - F:\CLI			2	SS 5	100	4-3-3	0.25		30.5				
DT - 12/6/16	-												
101 101 2014.GD				ST 5	100					37	20	17	
GINT STD US													
GEOTECH BH COLUMNS - GINT STD US LAB 2014.GDT - 12/6/16 09:54 - F:/CLIENTS/ACTIVE/GINT/PROJECTS/LAE001.GPJ		Stiff, gray-brown, lean CLAY, wet.		SS 6	100	4-5-5	0.25		28.5				
EOTECH BH													
<u>8 115</u>		(Continued Next Page)					<u> </u>						

Hull & Associates, Inc. 4 Hemishpere Way Bedford, Ohio 44146 Telephone (440) 232-9945 Fax (440) 232-9946

BORING NUMBER BH-16

PAGE 4 OF 4

		ke Erie Energy Development Corporation (LEEDCo) UMBER _LAE001			eaker Offsl Former CP				⁼ 12, C	levela	and, Ol	nio
HLd3D 115	GRAPHIC LOG	MATERIAL DESCRIPTION	SAMPLE TYPE NUMBER	RECOVERY % (RQD)	BLOW COUNTS (N VALUE)	POCKET PEN. (tsf)	DRY UNIT WT. (pcf)	MOISTURE CONTENT (%)				FINES CONTENT (%)
 120		Stiff, gray-brown, lean CLAY, wet. <i>(continued)</i>	ST 6 SS 7	100	6-6-6			19.6				

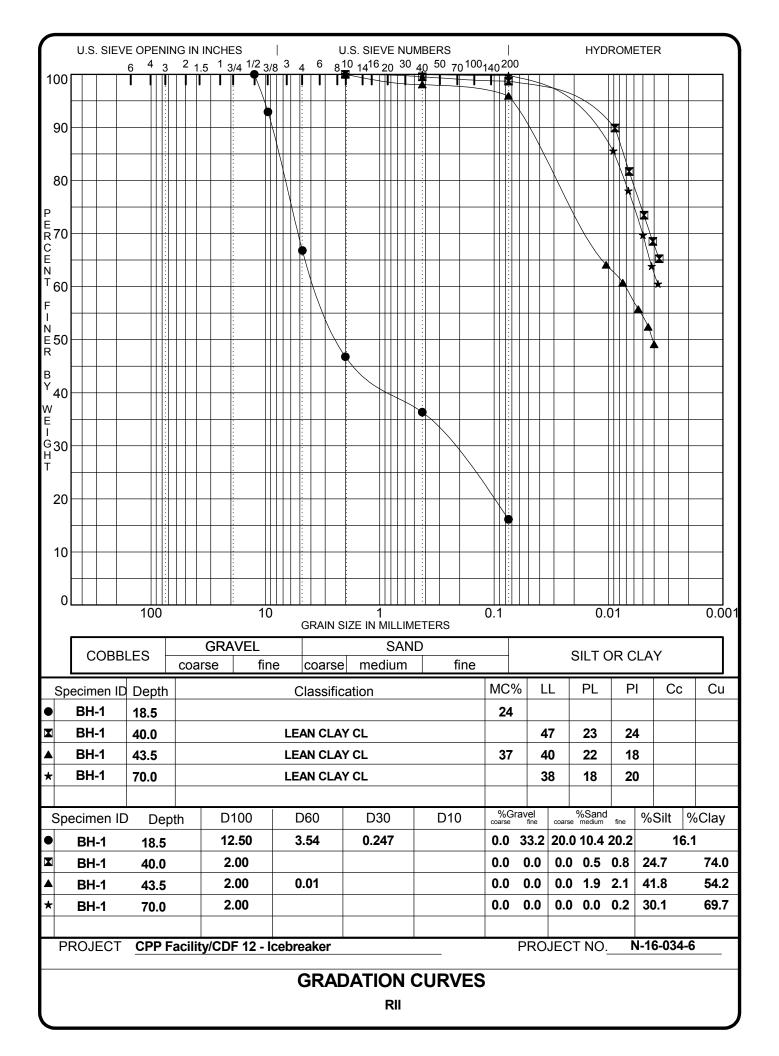
Bottom of borehole at 121.5 feet.

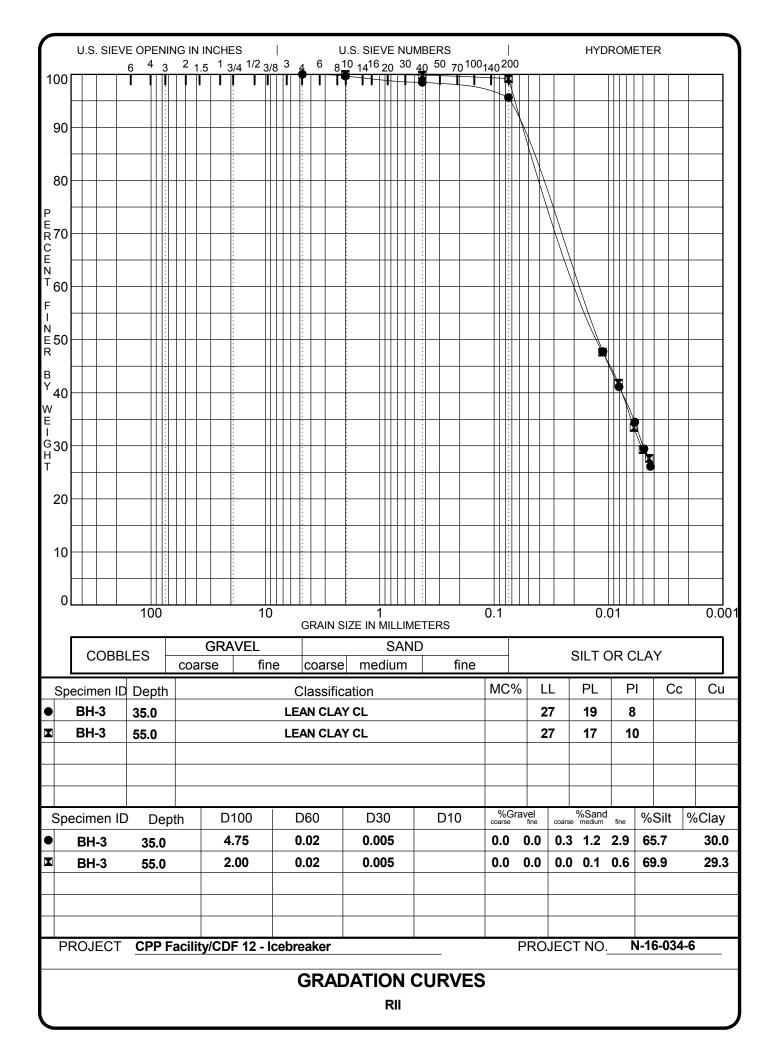
APPENDIX C

Geotechnical Laboratory Testing Results

APPENDIX C-1

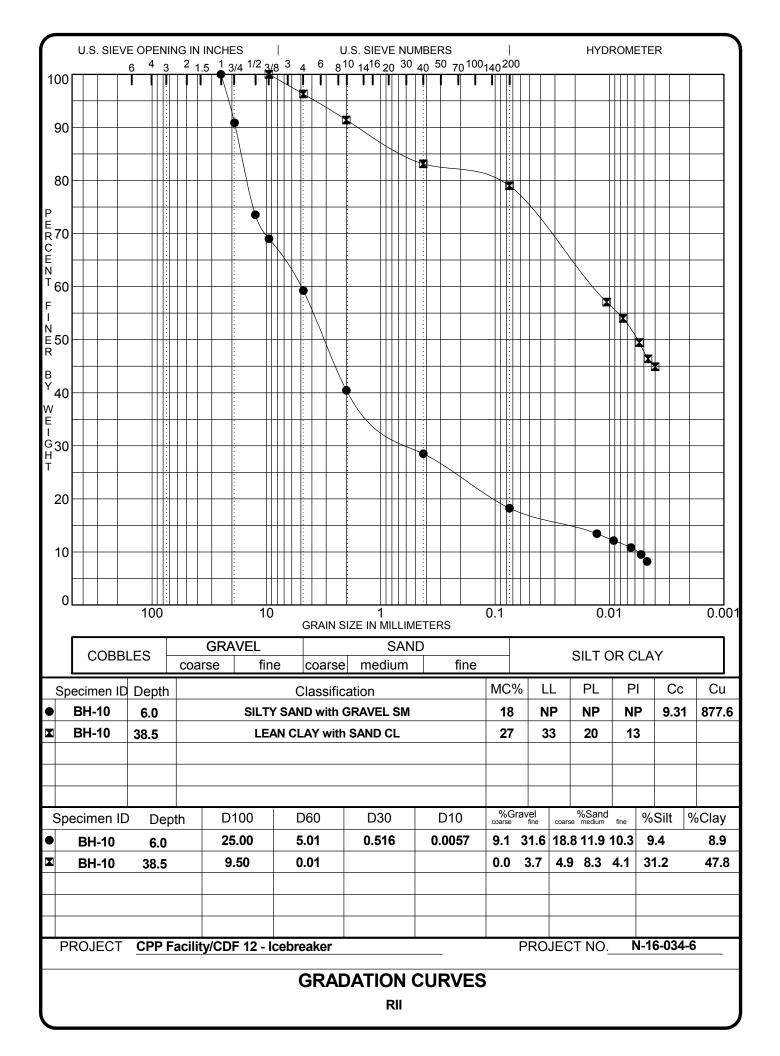
Index Testing (Grain Size Analysis and Plasticity Characteristics)

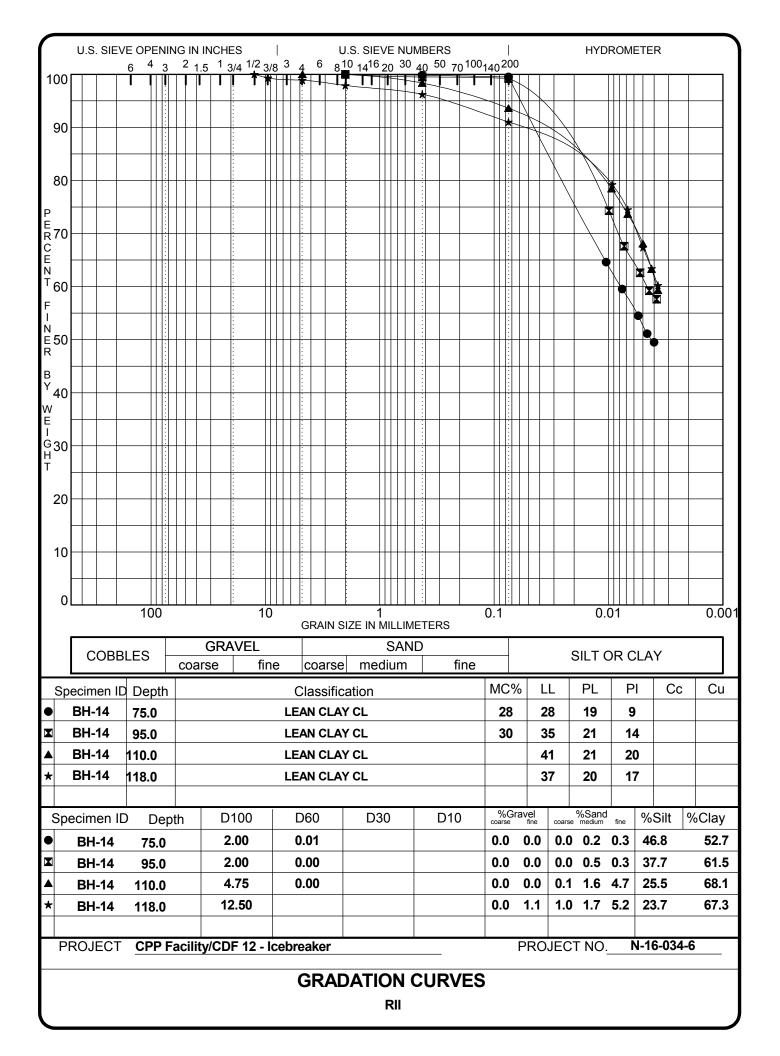

SUMMARY OF LABORATORY RESULTS PAGE 1 OF 1



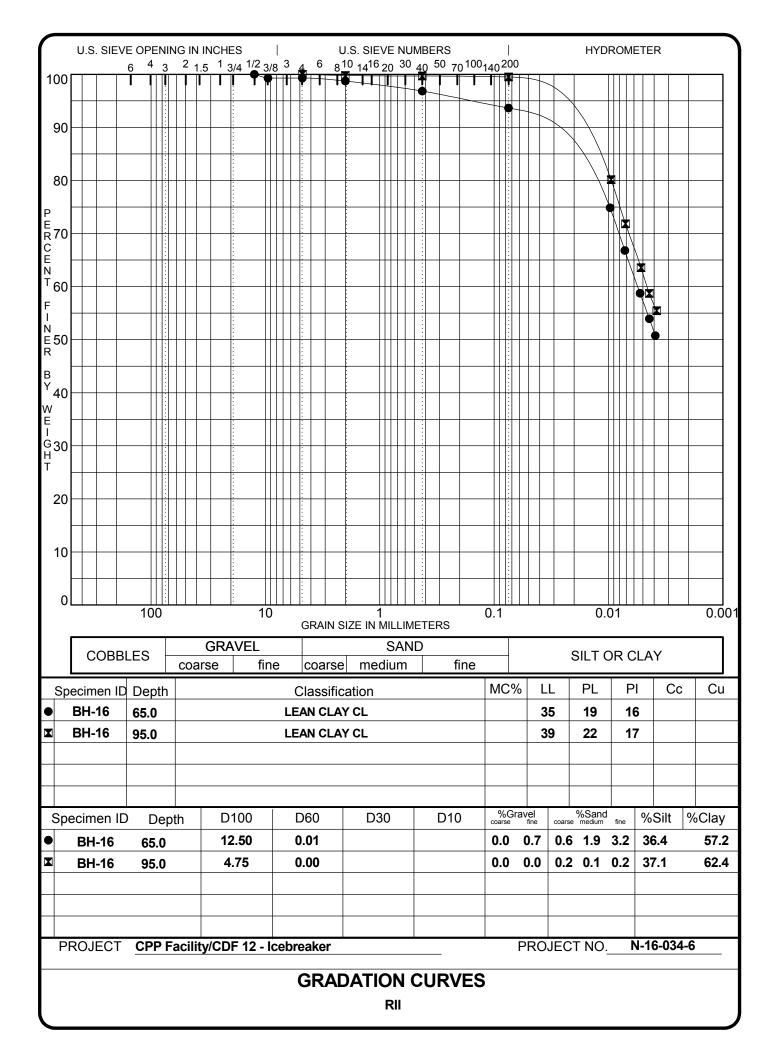
Resource International, Inc.

PROJECT	CPP FA	CILITY/CD	F 12 - ICEBI	REAKER	1		RI	PROJECT NO.: <u>N-16-034-6</u>	
Borehole	Sample	Depth	Water Content (%)	Liquid Limit	Plastic Limit	Plasticity Index	%<#200 Sieve	Classification	LOI
BH-1	SS-7	18.5	23.6				16		
BH-1	SS-11	38.5	31.6	27	19	8			
BH-1	ST-1	40.0		47	23	24	99	LEAN CLAY CL	
BH-1	SS-12	43.5	37.4	40	22	18	96	LEAN CLAY CL	
BH-1	ST-2	50.0		35	18	17			
BH-1	SS-14	53.5	28.4	38	23	15			
BH-1	ST-3	70.0		38	18	20	100	LEAN CLAY CL	
BH-10	SS-3	6.0	17.6	NP	NP	NP	18	SILTY SAND with GRAVEL SM	
BH-10	SS-10	38.5	27.3	33	20	13	79	LEAN CLAY with SAND CL	
BH-11	SS-3	6.0	19.2	NP	NP	NP			
BH-13	SS-1	3.5	14.1				7		
BH-14	SS-1	75.0	27.7	28	19	9	100	LEAN CLAY CL	
BH-14	SS-2	95.0	29.9	35	21	14	99	LEAN CLAY CL	
BH-14	ST-1	110.0		41	21	20	94	LEAN CLAY CL	
BH-14	ST-2	118.0		37	20	17	91	LEAN CLAY CL	
BH-15	SS-6	20.0	38.3				4	POORLY GRADED SAND with GRAVEL SP	
BH-16	ST-1	65.0		35	19	16	94	LEAN CLAY CL	
BH-16	ST-2	75.0		35	17	18			
BH-16	ST-4	95.0		39	22	17	100	LEAN CLAY CL	
BH-16	ST-5	105.0		37	20	17			
BH-16	ST-6	115.0		38	19	19			
BH-3	SS-9	33.5	24.1	NP	NP	NP			
BH-3	ST-1	35.0		27	19	8	96	LEAN CLAY CL	
BH-3	ST-3	45.0		45	24	21			
BH-3	ST-4	55.0		27	17	10	99	LEAN CLAY CL	
BH-3	SS-14	58.5	28.7	37	22	15			
BH-6	SS-2	3.5	39.3				58		
BH-9	SS-4	8.5	26.2	35	21	14			
BH-9	SS-6	18.5	39.0				4	WELL-GRADED GRAVEL with SAND GW	
BH-9	SS-9	33.5	28.4	32	20	12			

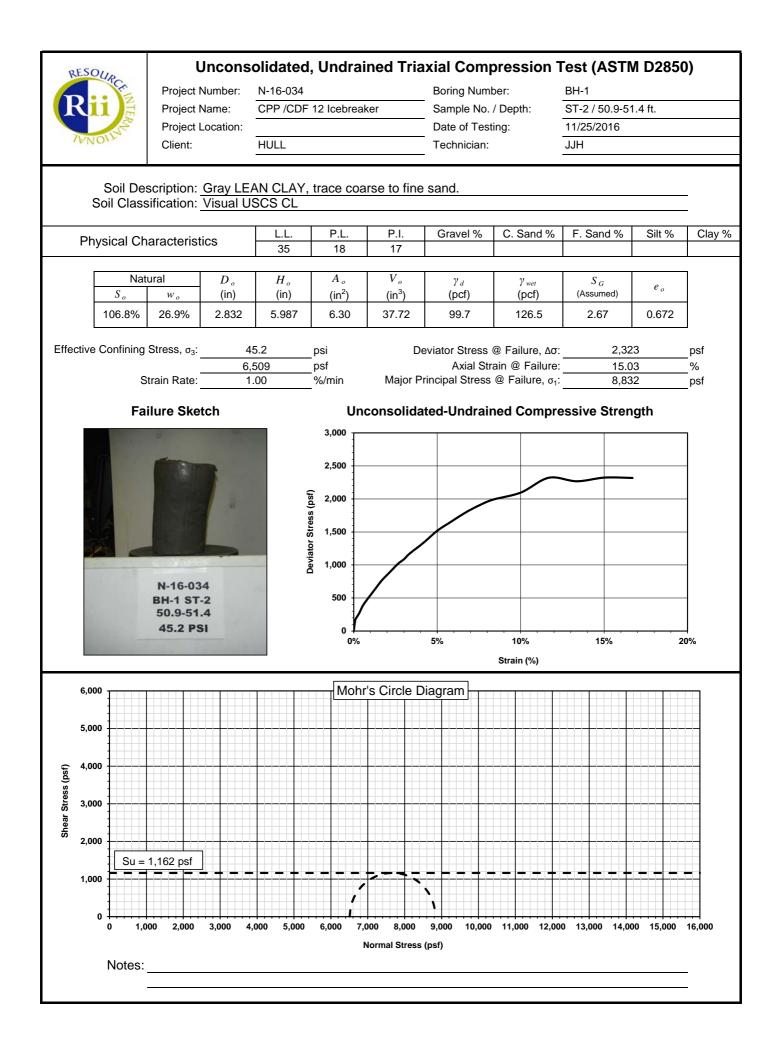

LAB SUMMARY RII SS - OH DOT.GDT - 12/14/16 13:06 - U.\GI8\PROJECTS\2016\N-16-034

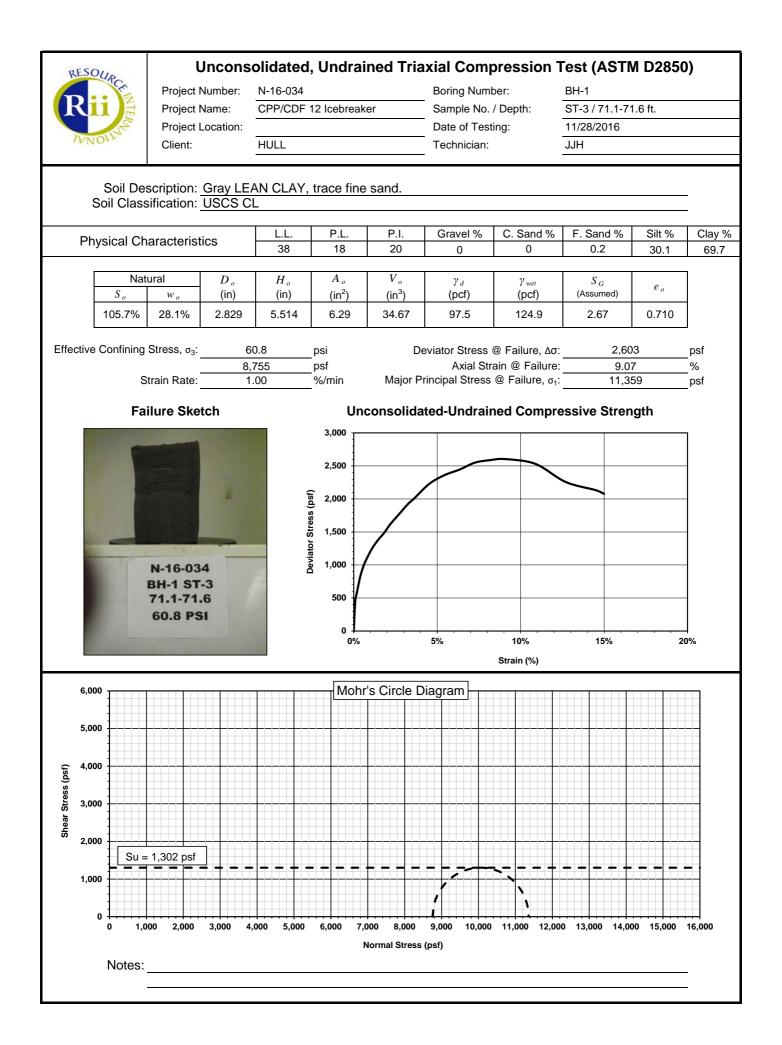


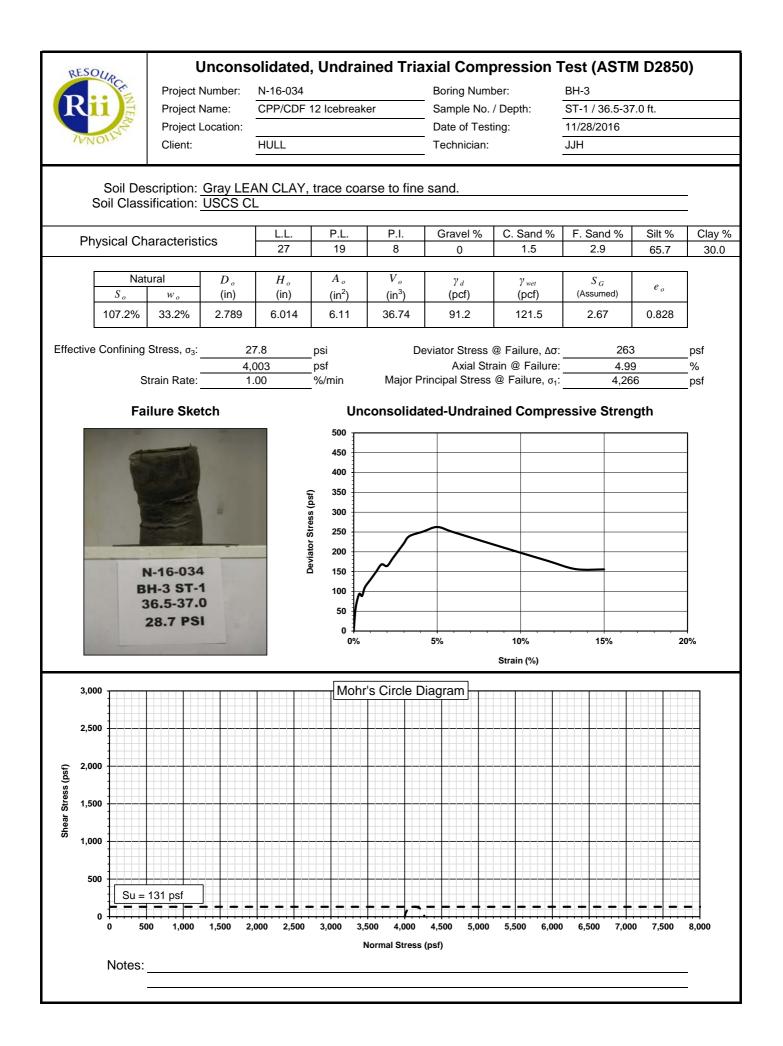
\bigcap	U	.S. S	SIEV	′E C 6						ICH 1			2 2		3	1	(3			5. S								<u>م</u> 1	00	14	<u>_</u> 2	 00					H	YDI	RO	ME	ETE	ĒR					
100	<u>ا</u>			Ť	I	1			1	Τ	<u> </u>	-	Ŋ		I	ļ		I	Ť		1		1		- <u>-</u>		T	1	ľ	Ι	1				Τ								Τ					
0											:				N		,																															
90	\Box					:																				•																						
80						:					:								<u> </u>																													
						:					:								$\left \right\rangle$																													
г Е R70)										:										<u> </u>		\downarrow										-															
P E R 70 E N						:					:		_				+	-		-						• 	+	_					:														_	
^т 60	┝┝┥					:					:		_														+			<u> </u>	\setminus	$\left \right $			_	_	_		_				-				_	
F I	\mid	_				:	+				:		+				+	+		:		_	+	+	-	:	+		-			+			+	+	+		_		+	-	+		_		_	
N E 50 R	┝┝					:					:		-														-					+					_		_								_	
						:					:			\parallel		:	+			:						:	+						:						_								_	
в Ү 40 W)										:															:							:										\uparrow					
W E I						:																				•							•															
G 30 H T)										· · · ·															•	T																					
20																										•																						
20	ΊЦ					:					:																																					
10																																																
						:					:																_																					
(100))					:		1(<u> </u>								1									0.	 1							0.0)1						0	.0(71
	_					, 					<u> </u>	<u></u>				G	SR/	AIN	۱S	SIZ	ΕI		ЛIГ				R	S			0.	·							0.0									,
		СС	BB	LE	S	_	C	oa	ars	SR/ e	40		_ fir	ne		(00	ar	se	•	m	ec		AN Im)		f	ine	e							S	SILT	ГС	DR	С	LA	١Y					
S	bec	ime	n IC	D	ер	th										CI	as	ssi	fic	cat	ior	า									Ν	ЛC	:%	,	L	L		ΡL	-		Ρ	I		Сс	;	C	Cu	
•	B	H-6	;	;	3.5																											39	9															
																															+																	
Sr		mo	n IC			00	th			<u></u>)1(0		1		D	60				г Г	23	0				Г)1(<u> </u>			%	Gra	ave	1			%Sa medi	and			0/	Si	lt	0/		av	_
•		H-6		, 	3.		oth				2.5					0.					-	55	0						<u>,</u>		+).0		fir 8.		-		medi			_	7			8.0		ay	
														+											-																							_
\vdash																			_																													_
F	RC	JE	СТ	C	PF	۶F	ac	ili	ty/	CE)F	12	-	lce	eb	rea	ak	er	,															PF	RO	JE	СТ	N	0.		Ν	1-1	6-()34	1-6			
																G	F	R/	1)/	٩T	710	O	Ν	С	U	JF	۲V	/E	S)																	
																							R																									

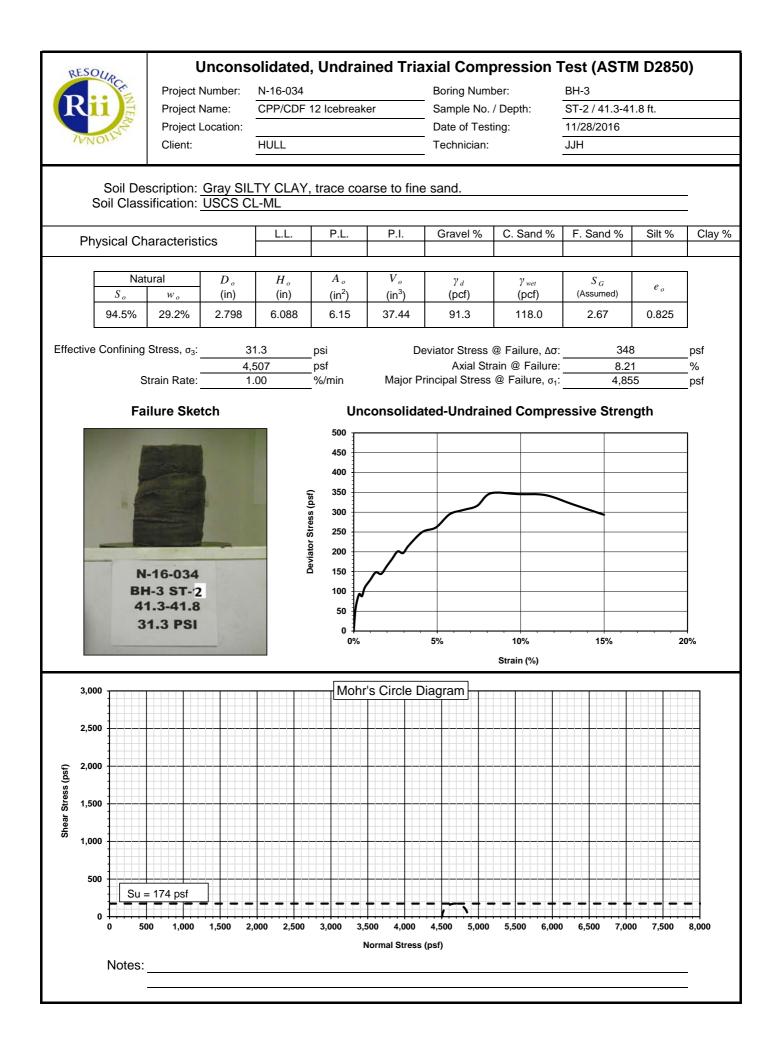

\bigcap	ι	J.S.	SIE	VE									_		_		_			S. SIE													HYE	RON	1ET	ER			
100	Г			6	4	3		2	1.5	1	3/4	1/2 ¶	² 3	/8	3 	4	6	8	10 1	14 ¹⁶	20	3	0 _ 	10 	50	70	100	⁾ 14	0 ²⁰					1111					٦
	_			•				Ļ	-	•			\prod							••				-	_	-	•												$\left \right $
90													$\left \right $:																							
80																																							
P								\uparrow			:			Ĭ																									1
R70								+			:			N		:			-					:															
P ER70 C EN	-							+			:			╢	$\left \right $:			-					:	-	_						-							$\left \right $
^T 60	_							+			:		_		N									:	_	_									+				$\left \right $
F I	_							+			:				\downarrow									-	_	_						_			++				$\left \right $
N E 50 R								-			:					È			-					:		_													
											:						L		-																				
в Ү 40											•••••					:								:															
40 W																		$\left \right\rangle$																					
W E I																																							
Ġ30 Н																				\setminus																			
Т								+			:					:			-	$\overline{}$:															
20	_							┢	-		:		+		$\left \right $:			-		$\left \right $				+	+					+	-			++				$\left \right $
	_							+														┦			_	_													$\left \right $
10	_							+							\square								\geq		_	_													$\left \right $
											:					:			-					:	$\Big $	\downarrow	_												
0											:					:								:															
					10	0							1()		G	RA	IN S	SIZ	E IN	1 MIL	LI	ME	TE	ERS	5		0.	.1				0.	.01				0.	001
	Γ	<u> </u>	OBI	21 0	-0				(GR/	A١	/El	_								S	SA	NE)									SILT		21	~~			ן ך
							(203	ars	e			fir	ne		C	:02	irse)	me	diu	Im	1			fi	ne	_											
			en l																	tion								N	ЛС		L	L	PL	F	P	-	Сс	C	
•	E	3H-	.9	-	18.5	5				W	EL	L-0	GR	A	DE	DC	GR/	AVE	EL	with	SA	٩N	D	GW	V			_	39)				_		-	1.39	15	.0
				+			+																					+						_		_		+	
				+			+																					+										+	
				+			+																					+										+	
Sp	ec	im	en l	D	D)ep	oth	۱		D)1(00				De	60			D	30				D	10		с	%C	Gra	vel _{fine}	coar	%Sand	d fine	9	6Si	lt 9	%Cla	y
•	E	ЗH	-9		18	.5				1	2.	50				5.9	93			1.8	804	ŀ		(0.3	95	3	(0.0	4	8.2	20.	.4 21.1	6.7			3.6	\$	
		ייר	ECT	-				cil	itr.			10)		<u></u>			r															CT NO		 N_*	16-	034-(<u> </u>	
	1.((501				r r	a		ιιy		/Г	12	-		717															Γ	1.0			·				·	-
																G	R	A	D	ATI	0	Ν	C	U	JR	V	ES	5											
l																					R																		

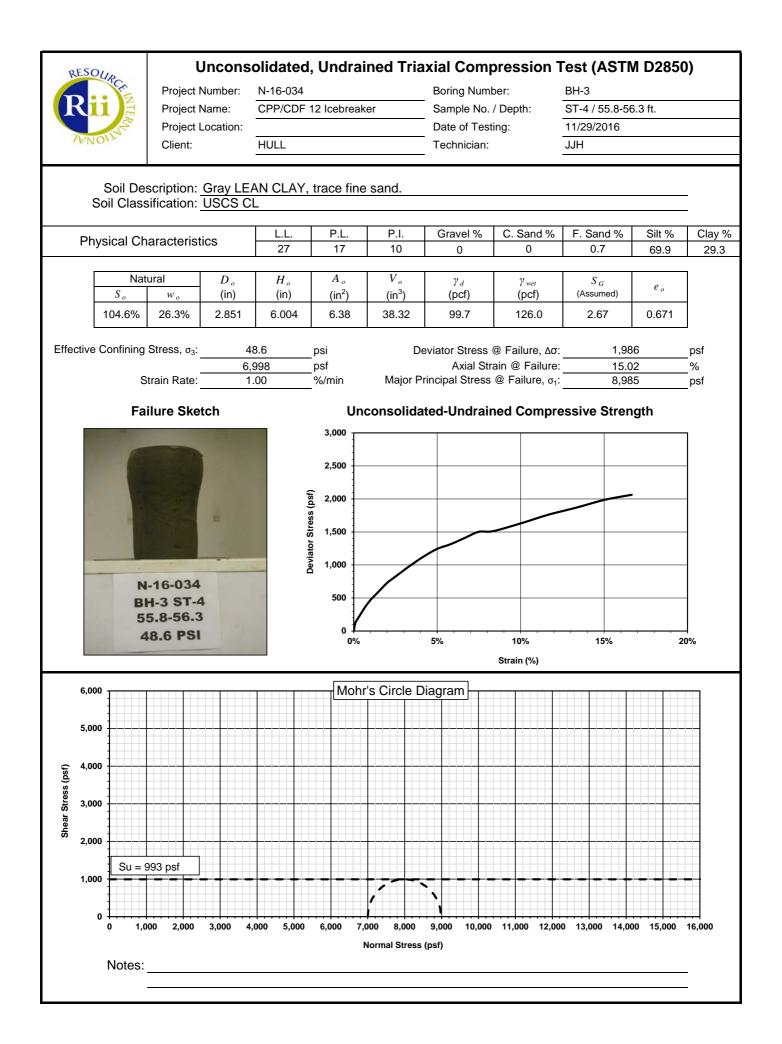
\bigcap	ι	J.S.	SIE										10					~		J.S.									00			20				ΗY	DR	ROM	1E1	ΓEF	2			
100	Γ			6	4	3 	; 	2	1.5 		3/	4	12	3/8 	3 	4	•	。 	81	10 <u>1</u>	410	20) ³	50 . 	40 [50	⁰ 7	01	1	14()20 								Π		Т	\top		٦
	╞				_										-	:		-		-					:									_			_				+	+		-
90	┝				_										_																			_			_				+	+		-
	╞				_						1					:									:									_							_	+		_
80												_	•			-																					_				_	\downarrow		_
																																										\perp		
						:					• • • •					•									:																			
	1																																											
P R70 C N T 60																V									:																			
'60 F																-									:														Π			T		
l N	F																\land																									+		
E 50 R																		\setminus																-							+	+		
							$\left \right $		+		:				+	:			$\overline{}$			+			:							$\left \right $			_		-				+	+		-
в Ү 40	┝														+		-	+							:					_				-			_				+	+		-
W E I	╞								-						+		-	+			\leftarrow			$\left \right $		_		-		_				_			_		$\left \right $		+	+		_
ы G30 Н	┝										:					:				-		K			:									_							_	+		-
Т															_			_					Å																			\downarrow		
20																-									ě																	_		
_											• • • •					:									:																			
10																												\setminus	$\overline{\ }$															
10	Ϊ															:									:																			
C																																											-	
	·				10	0			1				1	0					19	IZE		1 MI								0.	1	<u></u>				C	0.0	1					0.	001
	Г								(GF	RA	VE	EL					-					SA				.0																	ר
		C	OBE	BLE	ES		(co	ar					ine	è		со	ar	se		ne						f	ïn	е						S	ILT	0	R(CL	A)	/			
S	bec	im	en I	D	Dep	oth										С	las	ssi	fic	atio	on									N	/IC	%	L	L		PL		F	P		С	С	С	u
•	В	H- ′	13		3.5	5																									14	1									1.3	36	44	.8
							_																														_						<u> </u>	
				_			_																												-		_							
				_			_																														_						<u> </u>	
Sr	ec	im	en l	D	Г)e	pth	<u>ו</u>			D1	00)			D	60				D	30				Г	D10)			%0	Grav	vel		9	6Sar	nd	fino	0	%5	Silt	%	¦ 6Cla	IV
			·13			5.5		<u> </u>				.00		+			77				0.8			+			106		,	-				17					-	/00		7.3		. y
					0.5						<u> </u>			_			-'																		<u>_</u>					40	00			
F	'R(JJE	ECT	-	υP	P	⊦a	Cil	Ity	//C	υF	• 1	2 -	IC	et	ore	ak	er														Р	'RC)JE(CI	NC	ע		N-	-16	-03	4-6		-
																0	F	R/	١C)A	TI	0	N	(Cl	JF	٦V	/E	ES	5														
																						F	RII																					

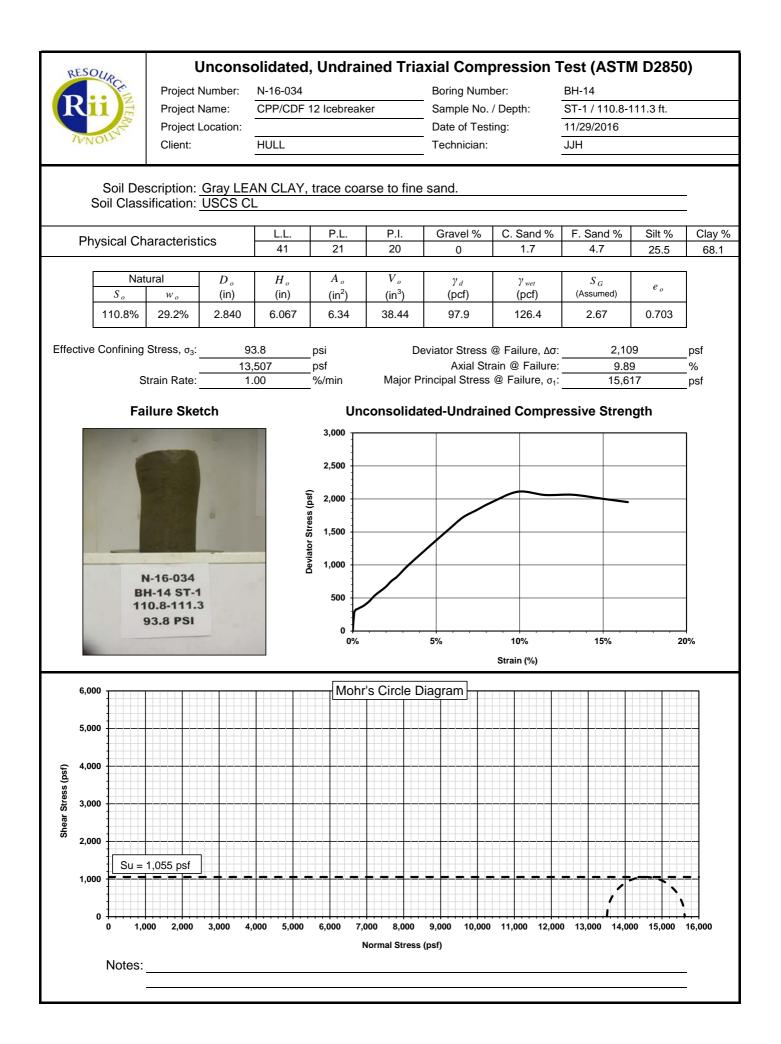


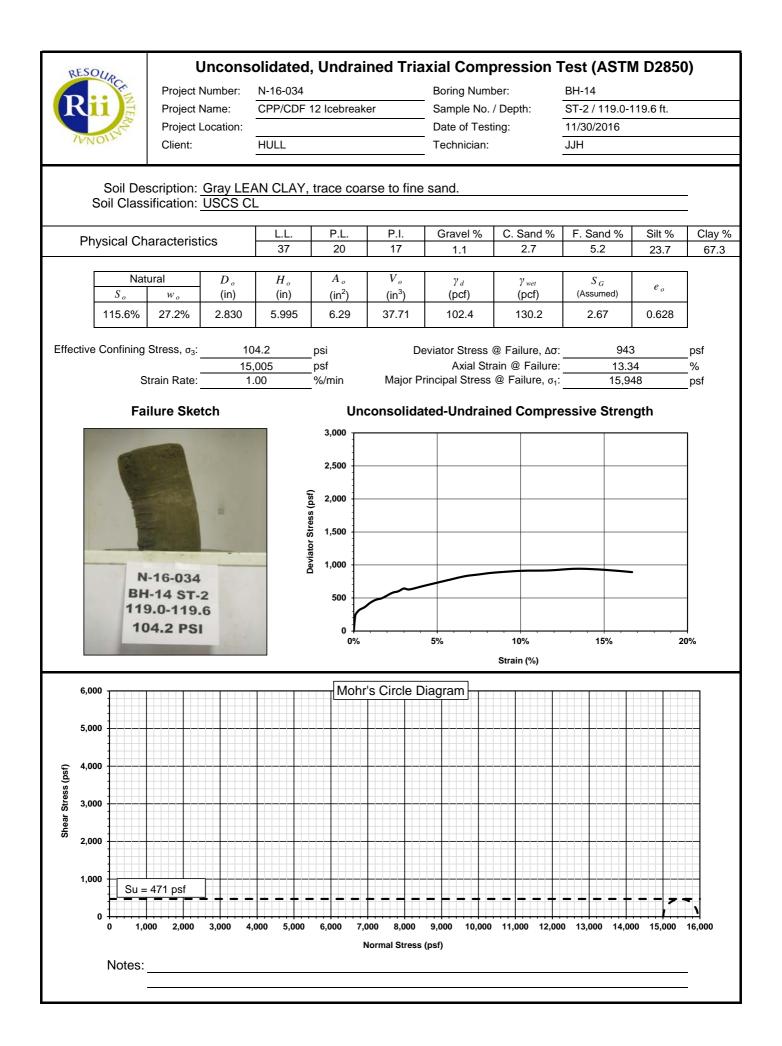

\bigcap	ι	J.S.	SIE	VE 6			IIN 3						1/2	 3/8	3	4	6			5. SI 14 ¹							<u>ი</u> 1	00	14(120	00				HYE	DR	OM	ETE	ER				
100	Γ			Ť					T		Т		•		I	Ī	I	ŢĬ		Ť		Ĭ			, 	Γ [΄] Ι	ľ	Ι	T										Τ				
90							· · ·									· · ·																											
90							· · · ·							\mathbb{N}																													
80												-																															
							· · ·								X																								_				
Е R70							:																										_						_				
P E 70 C E N	L															<u>\</u>			-														+						+				
^т 60	┝								+	_						.					+		_		_				_				+			+	\square		+			_	
F I	╞						:		+			:				:	\mathbb{R}		-		╢				_					:		$\left \right $	+			+	\square		+			_	
N E 50 R	┝																	\land																					+				
в Ү 40							:									:																							+			_	
'40 W																				$\overline{}$																							
W E I							•														X																						
Ġ30 Н Т												• • • •										N																					
20							· · ·																							•••••													
20							· · ·																	Ò	<u>'</u>																		
10																										\sum																	
									_																			\geq	\triangleleft														
C					10	00	:						1	 0		:			:		1			:					0.	[1					0	.0	1					0.0	01
	F						1			<u> </u>		VE		<u> </u>		G	RA	IN S	SIZ	E IN			-IN		ΈF	RS			0.	•					-								
		C	OB	BL	ES			СС	bar					ne	;	c	:02	irse	e	me						f	in	е						SI	LT	OF	R C	CL/	١Y				
Sp			en l	D	De	otł	ı													tion									N	1C	%	L	.L	F	PL		Ρ	1		Сс	-	Cu	
•	B	H-′	15	-	20.	0				Ρ	00	DRI	.Y (GR	AC)EC	S	ANI	D٧	with	GI	RA	VE	EL	SF	•			-	38	}								0).97	2	26.5	5
				+			_																																		-		
																																									_		
Sr	er	im	en			م٦	pt	'n			D	10	<u>ר</u>			De	50				30)				D10)			%0	Grav	vel		%	San	d ,		%	Si	It (%C	lav	_
•			-15).0	-					2.5				4.2				0.						16 [°]			+			8.1	-		28.4					3.0		lay	
									_					+					-										-														
P	R	JI	ECT	Γ	CP	Ρ	Fa	aci	lit	y/C	D	F 1	2 -	lc	eb	rea	ike	er								-					Ρ	RC	JE(СТ	NO		1	N-1	6-0)34-	6		
																G	R	A	D	AT	IC)	1 (C	U	R٧	/E	ES	\$														_
l																						RII	I																				

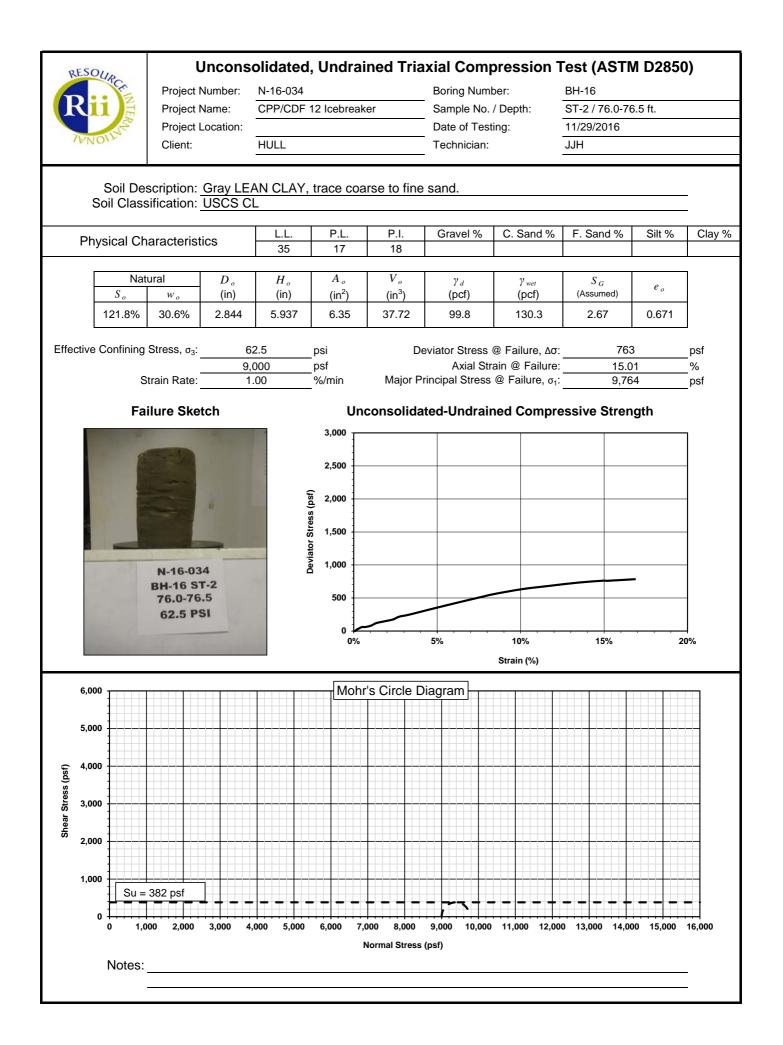


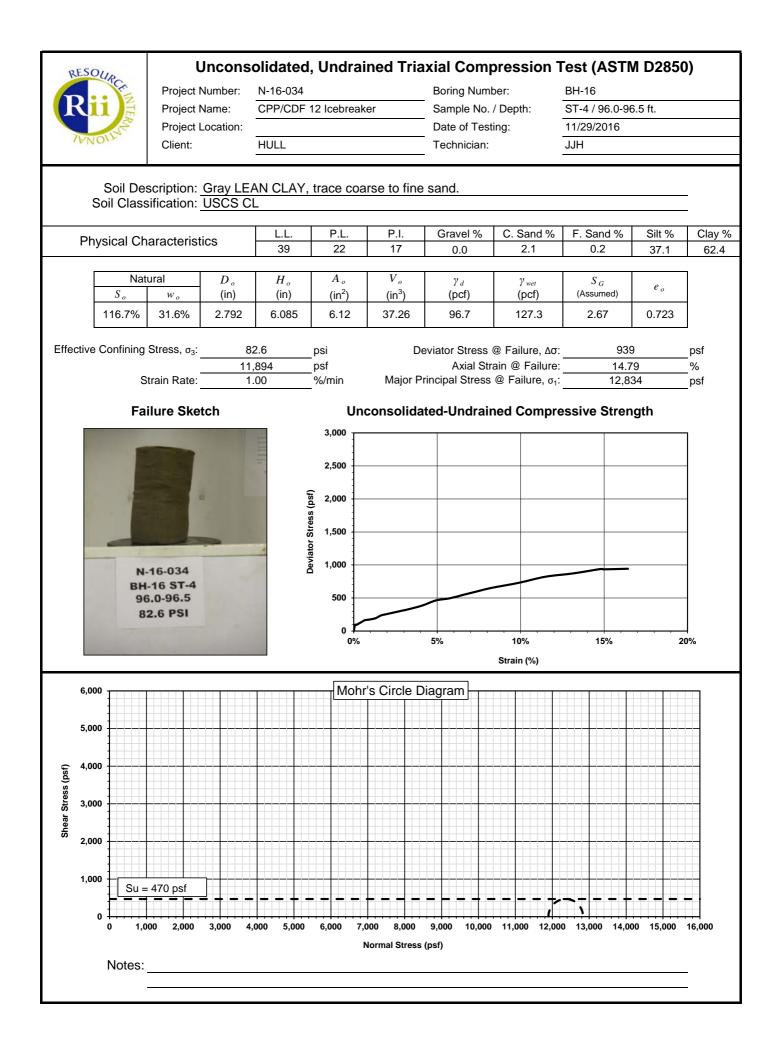

APPENDIX C-2

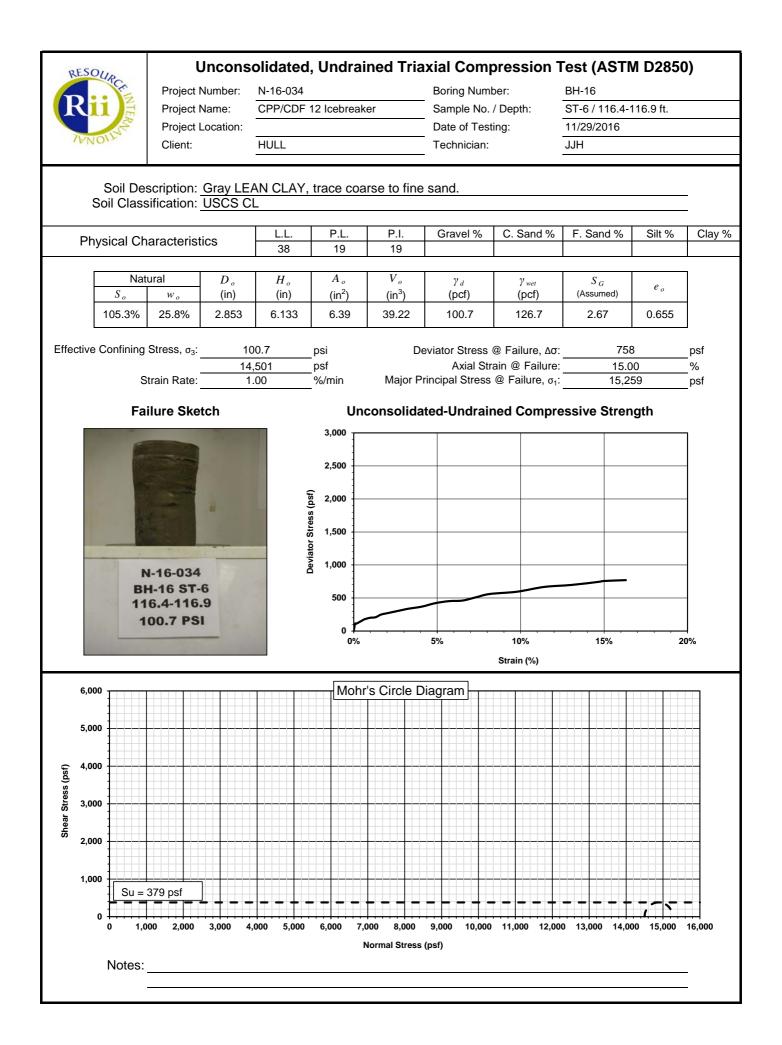

Unconsolidated Undrained Triaxial Compressive Strength Test Results

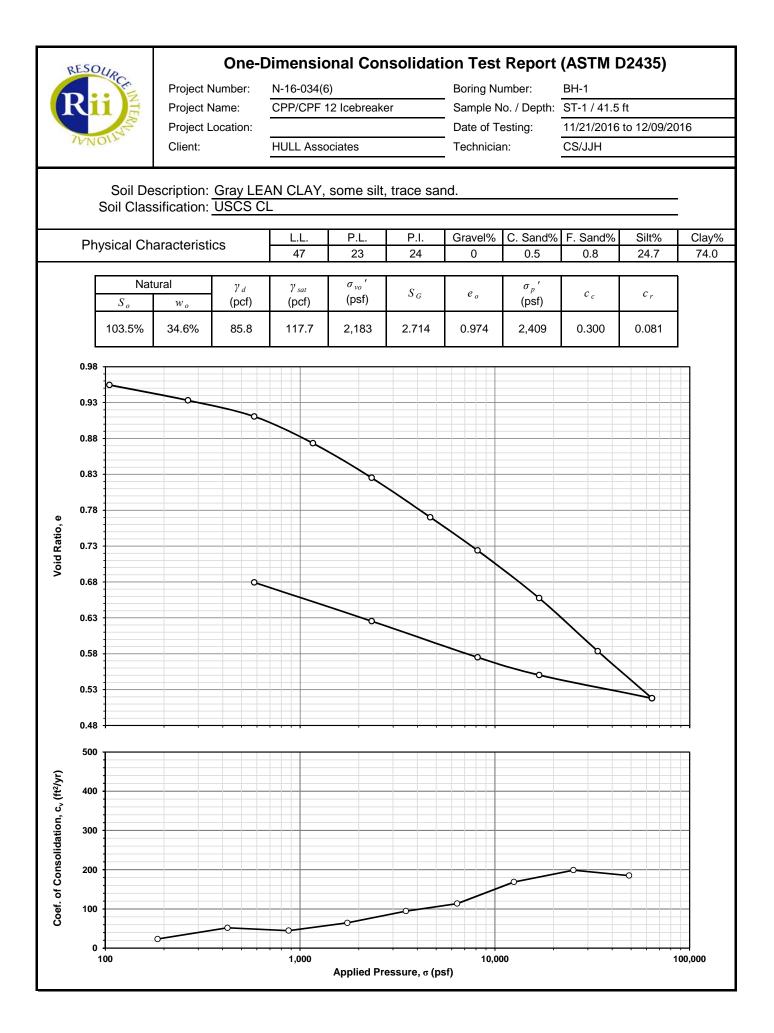


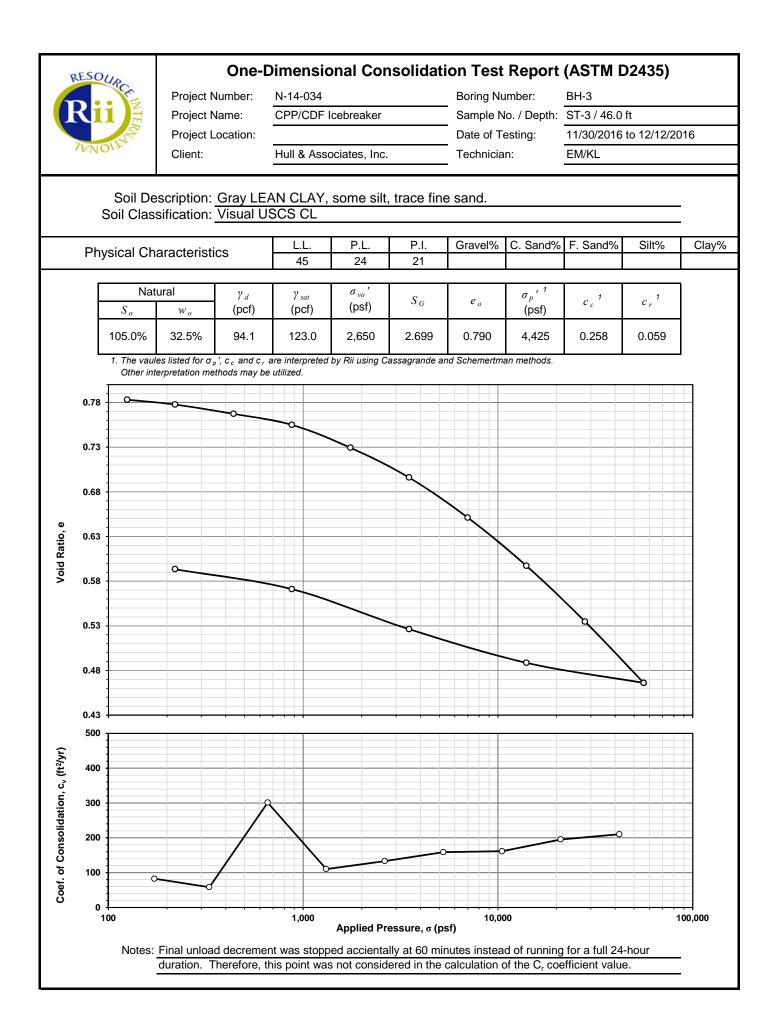


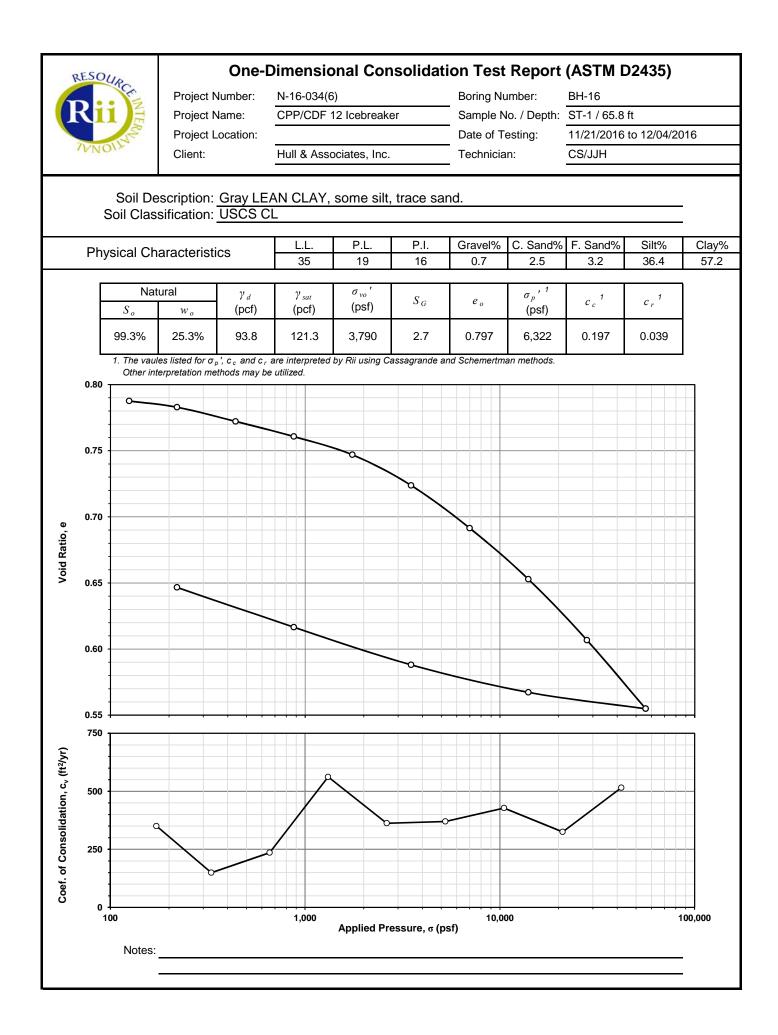


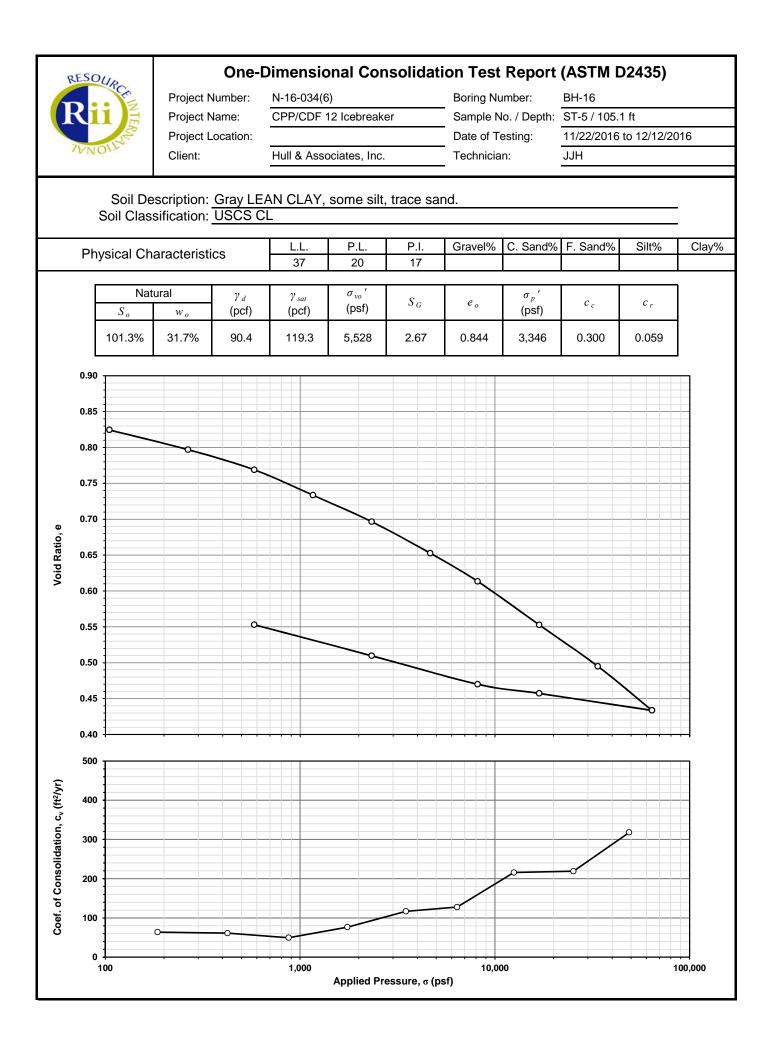











APPENDIX C-3

One-Dimensional Consolidation Test Results

APPENDIX D

Laboratory Analytical Data

LAKE ERIE ENERGY DEVELOPMENT CORPORATION ICEBREAKER OFFSHORE WIND DEMONSTRATION PROJECT CLEVELAND, CUAYHOGA COUNTY, OHIO

TABLE D - GEOENVIRONMETAL LABORATORY RESULTS

Station Name	•		ontact Soil Standards	BH-5	BH-7	BH-9	BH-13
Sample Depth	Units	(mg	/kg) [°]	8.5 - 10.5 ft	3.5 - 5.5 ft	3.5 - 5.5 ft	3.5 - 5.5 ft
Sample Date		Commerical/	Construction/	10/19/2016	10/19/2016	10/18/2016	10/17/2016
FieldSampleID	>	Industrial	Excavation	LAE001:BH-5:S0851005	LAE001:BH-7:S035055	LAE001:BH-9:S035055	LAE001:BH-13:S035055
Metals by U.S. EPA Method 60	10						
Arsenic	mg/kg	77	690	75.3	113	104	30.6
Barium	mg/kg	NS	NS	132	195	156	309
Cadmium	mg/kg	2,600	1,000	2.7	<0.7	0.63	6.5
Chromium ^b	mg/kg	210	1200	20.8	27	9.8	27.8
Lead	mg/kg	800	400	6.4	8.4	92.7	328
Silver	mg/kg	20,000	11,000	<0.59	<0.7	<0.63	<0.64
Selenium	mg/kg	20,000	11,000	3.4	3.9	3.7	1.4
Mercury by U.S. EPA Method 7							
Mercury	mg/kg	3.1	3.1	<0.28	< 0.28	<0.24	0.41
PCBs by U.S. EPA Method 808	2	•					
Aroclor 1016	mg/kg	100	260	< 0.13	< 0.14	< 0.13	<0.13
Aroclor 1221	mg/kg	14	210	< 0.13	< 0.14	< 0.13	<0.13
Aroclor 1232	mg/kg	14	73	< 0.13	< 0.14	< 0.13	<0.13
Aroclor 1242	mg/kg	20	440	<0.13	< 0.14	< 0.13	<0.13
Aroclor 1248	mg/kg	20	440	< 0.13	< 0.14	<0.13	<0.13
Aroclor 1254	mg/kg	20	75	< 0.13	< 0.14	< 0.13	< 0.13
Aroclor 1260	mg/kg	20	440	< 0.13	< 0.14	< 0.13	< 0.13
VOCs by U.S. EPA Method 820	50	•					
1,1,1,2-Tetrachloroethane	mg/kg	240	680	<0.0067	< 0.0073	< 0.0063	<0.0065
1,1,1-Trichloroethane	mg/kg	640	640	<0.0067	< 0.0073	< 0.0063	<0.0065
1,1,2,2-Tetrachloroethane	mg/kg	75	670	<0.0067	< 0.0073	< 0.0063	<0.0065
1,1,2-Trichloroethane	mg/kg	140	1,200	<0.0067	< 0.0073	< 0.0063	<0.0065
1,1-Dichloroethane	mg/kg	420	1,700	<0.0067	< 0.0073	< 0.0063	<0.0065
1,1-Dichloroethene	mg/kg	1,200	360	<0.0067	< 0.0073	<0.0063	<0.0065
1,2,4-Trimethylbenzene	mg/kg	220	220	<0.0067	< 0.0073	< 0.0063	<0.0065
1,2-Dichloroethane	mg/kg	56	480	<0.0067	< 0.0073	< 0.0063	<0.0065
1,2-Dichloropropane	mg/kg	120	180	<0.0067	< 0.0073	<0.0063	<0.0065
1,3-Dichloropropane	mg/kg	1,500	1,500	<0.0067	< 0.0073	<0.0063	<0.0065
2-Butanone	mg/kg	28,000	28,000	< 0.034	<0.036	< 0.032	<0.032
4-Methyl-2-pentanone	mg/kg	3,400	3,400	<0.034	<0.036	< 0.032	<0.032
Acetone	mg/kg	110,000	110,000	<0.13	< 0.15	<0.13	<0.13
Benzene	mg/kg	140	1,200	0.0077	< 0.0073	0.0091	0.0079
Bromodichloromethane	mg/kg	35	300	<0.0067	< 0.0073	<0.0063	<0.0065
Bromomethane	mg/kg	82	550	<0.0067	<0.0073	<0.0063	<0.0065
Carbon Disulfide	mg/kg	740	740	<0.013	<0.015	< 0.013	< 0.013
Carbon Tetrachloride	mg/kg	79	460	<0.0067	< 0.0073	<0.0063	<0.0065
Chlorobenzene	mg/kg	760	760	<0.0067	< 0.0073	<0.0063	<0.0065
Chloroethane	mg/kg	2,100	2,100	<0.0067	<0.0073	<0.0063	<0.0065
Chloroform	mg/kg	38	320	<0.0067	< 0.0073	<0.0063	<0.0065

LAKE ERIE ENERGY DEVELOPMENT CORPORATION ICEBREAKER OFFSHORE WIND DEMONSTRATION PROJECT CLEVELAND, CUAYHOGA COUNTY, OHIO

TABLE D - GEOENVIRONMETAL LABORATORY RESULTS

Station Name			ontact Soil Standards	BH-5	BH-7	BH-9	BH-13
Sample Depth	Units	(mg	/kg) [°]	8.5 - 10.5 ft	3.5 - 5.5 ft	3.5 - 5.5 ft	3.5 - 5.5 ft
Sample Date	Units	Commerical/	Construction/	10/19/2016	10/19/2016	10/18/2016	10/17/2016
FieldSampleID		Industrial	Excavation	LAE001:BH-5:S0851005	LAE001:BH-7:S035055	LAE001:BH-9:S035055	LAE001:BH-13:S035055
Chloromethane	mg/kg	1,300	1,300	<0.0067	<0.0073	<0.0063	<0.0065
cis-1,2-Dichloroethene	mg/kg	NS	NS	<0.0067	<0.0073	< 0.0063	<0.0065
cis-1,3-Dichloropropene	mg/kg	NS	NS	<0.0067	< 0.0073	< 0.0063	<0.0065
Dibromochloromethane	mg/kg	84	770	<0.0067	< 0.0073	< 0.0063	<0.0065
Dibromomethane	mg/kg	2,800	2,800	<0.0067	<0.0073	< 0.0063	<0.0065
Dichlorodifluoromethane	mg/kg	850	850	<0.0067	< 0.0073	< 0.0063	<0.0065
Ethyl Methacrylate	mg/kg	1,100	1,100	<0.13	< 0.15	<0.13	< 0.13
Ethylbenzene	mg/kg	480	480	<0.0067	< 0.0073	< 0.0063	<0.0065
Methyl tert butyl ether (MTBE)	mg/kg	5,700	8,900	<0.0067	< 0.0073	< 0.0063	< 0.0065
Methylene Chloride	mg/kg	3,300	3,300	<0.027	0.091	< 0.025	<0.026
n-Hexane	mg/kg	140	140	<0.0067	< 0.0073	< 0.0063	<0.0065
Styrene	mg/kg	870	870	<0.0067	< 0.0073	< 0.0063	<0.0065
Tetrachloroethene	mg/kg	170	170	<0.0067	< 0.0073	< 0.0063	<0.0065
Toluene	mg/kg	820	820	0.013	< 0.0073	0.025	0.017
trans-1,2-Dichloroethene	mg/kg	1,700	1,700	<0.0067	< 0.0073	< 0.0063	< 0.0065
trans-1,3-Dichloropropene	mg/kg	NS	NS	<0.0067	< 0.0073	< 0.0063	< 0.0065
Trichloroethene	mg/kg	51	17	<0.0067	< 0.0073	< 0.0063	< 0.0065
Trichlorofluoromethane	mg/kg	1,200	1,200	<0.0067	< 0.0073	< 0.0063	<0.0065
Vinyl Chloride	mg/kg	50	280	<0.0067	< 0.0073	< 0.0063	<0.0065
Xylenes	mg/kg	260	260	<0.013	<0.015	0.019	< 0.013
1,2,4-Trichlorobenzene	mg/kg	400	400	<0.0067	< 0.0073	< 0.0063	< 0.0065
1,2-Dichlorobenzene	mg/kg	380	380	<0.0067	< 0.0073	< 0.0063	<0.0065
1,4-Dichlorobenzene	mg/kg	310	2,600	<0.0067	< 0.0073	< 0.0063	<0.0065
Bromoform	mg/kg	6,200	130,000	<0.0067	< 0.0073	< 0.0063	<0.0065
Isopropylbenzene (Cumene)	mg/kg	270	270	<0.0067	< 0.0073	< 0.0063	< 0.0065
Vinyl Acetate	mg/kg	2,700	620	<0.13	<0.15	< 0.13	<0.13
SVOCs by U.S. EPA Method 82	70	-					
2-Chlorophenol	mg/kg	20,000	22,000	<0.44	<0.47	<0.42	<0.43
Bis(2-chloroethyl) ether	mg/kg	30	290	<0.44	<0.47	<0.42	<0.43
Chloronaphthalene, Beta-	mg/kg	330,000	1,000,000	<0.44	<0.47	<0.42	<0.43
Nitrobenzene	mg/kg	610	3,000	<0.44	<0.47	<0.42	<0.43
2,4,5-Trichlorophenol	mg/kg	180,000	1,000,000	<0.44	<0.47	<0.42	<0.43
2,4,6-Trichlorophenol	mg/kg	1,800	1,400	<0.44	<0.47	<0.42	<0.43
2,4-Dichlorophenol	mg/kg	5,300	28,000	<0.44	<0.47	<0.42	<0.43
2,4-Dimethylphenol	mg/kg	35,000	85,000	<0.44	<0.47	<0.42	<0.43
2,4-Dinitrophenol	mg/kg	3,500	28,000	<2.1	<2.3	<2	<2.1
2,4-Dinitrotoluene	mg/kg	160	2,800	<0.44	<0.47	<0.42	<0.43
2,6-Dinitrotoluene	mg/kg	33	670	<0.44	<0.47	<0.42	<0.43
2-Methylnaphthalene	mg/kg	6,000	5,200	<0.44	<0.47	0.49	<0.43
2-Methylphenol	mg/kg	88,000	710,000	<0.44	<0.47	<0.42	<0.43
3&4-Methylphenol	mg/kg	NS	NS	<0.89	<0.95	<0.83	<0.86

LAKE ERIE ENERGY DEVELOPMENT CORPORATION ICEBREAKER OFFSHORE WIND DEMONSTRATION PROJECT CLEVELAND, CUAYHOGA COUNTY, OHIO

TABLE D - GEOENVIRONMETAL LABORATORY RESULTS

Station Name			ontact Soil Standards J/kg) ^a	BH-5	BH-7	BH-9	BH-13
Sample Depth	Units	(ing	/Kg)	8.5 - 10.5 ft	3.5 - 5.5 ft	3.5 - 5.5 ft	3.5 - 5.5 ft
Sample Date	• mis	Commerical/	Construction/	10/19/2016	10/19/2016	10/18/2016	10/17/2016
FieldSampleID		Industrial	Excavation	LAE001:BH-5:S0851005	LAE001:BH-7:S035055	LAE001:BH-9:S035055	LAE001:BH-13:S035055
4-Chloro-3-methylphenol	mg/kg	180,000	140,000	<0.89	<0.95	<0.83	<0.86
Acenaphthene	mg/kg	90,000	780,000	<0.44	<0.47	<0.42	<0.43
Acenaphthylene	mg/kg	NS	NS	<0.44	<0.47	<0.42	<0.43
Anthracene	mg/kg	450,000	1,000,000	<0.44	<0.47	<0.42	<0.43
Benzo(a)anthracene	mg/kg	58	1,200	<0.44	<0.47	<0.42	<0.43
Benzo(a)pyrene	mg/kg	5.8	120	<0.44	<0.47	<0.42	<0.43
Benzo(b)fluoranthene	mg/kg	58	1,200	<0.44	<0.47	<0.42	<0.43
Benzo(g,h,i)perylene	mg/kg	NS	NS	<0.44	<0.47	<0.42	<0.43
Benzo(k)fluoranthene	mg/kg	580	12,000	<0.44	<0.47	<0.42	<0.43
Bis(2-chloroethoxy) methane	mg/kg	5,300	43,000	<0.44	<0.47	<0.42	<0.43
Bis(2-chloroisopropyl) ether	mg/kg	680	1,000	<0.44	<0.47	<0.42	<0.43
Bis(2-ethylhexyl) Phthalate	mg/kg	3,500	71,000	<0.44	<0.47	<0.42	<0.43
Butylbenzyl phthalate	mg/kg	26,000	520,000	<0.44	<0.47	<0.42	<0.43
Chrysene	mg/kg	5,800	120,000	<0.44	<0.47	<0.42	<0.43
Dibenz(a,h)anthracene	mg/kg	5.8	120	<0.44	<0.47	<0.42	<0.43
Dibutyl Phthalate	mg/kg	180,000	430,000	<0.44	<0.47	<0.42	<0.43
Diethyl Phthalate	mg/kg	1,000,000	1,000,000	<0.44	<0.47	<0.42	<0.43
Fluoranthene	mg/kg	60,000	160,000	<0.44	<0.47	<0.42	<0.43
Fluorene	mg/kg	60,000	520,000	<0.44	<0.47	<0.42	<0.43
Hexachloroethane	mg/kg	1,200	3,000	<0.44	<0.47	<0.42	<0.43
Indeno(1,2,3-c,d)pyrene	mg/kg	58	1,200	<0.44	<0.47	<0.42	<0.43
Isophorone	mg/kg	52,000	1,000,000	<0.44	<0.47	<0.42	<0.43
Naphthalene	mg/kg	450	560	<0.44	<0.47	<0.42	<0.43
n-Nitroso-di-N-propylamine	mg/kg	7	140	<0.44	<0.47	<0.42	<0.43
n-Nitrosodiphenylamine	mg/kg	10,000	200,000	<0.44	<0.47	<0.42	<0.43
Octyl Phthalate	mg/kg	18,000	140,000	<0.44	<0.47	<0.42	<0.43
p-Chloroaniline	mg/kg	250	710	<0.89	<0.95	<0.83	<0.86
Phenanthrene	mg/kg	NS	NS	<0.44	<0.47	<0.42	<0.43
Phenol	mg/kg	530,000	840,000	<0.44	<0.47	<0.42	<0.43
Pyrene	mg/kg	45,000	390,000	<0.44	<0.47	<0.42	<0.43
Hexachlorocyclopentadiene	mg/kg	11,000	26,000	<0.44	<0.47	<0.42	<0.43
Percent Moisture SM 2540G		· · · · · · · · · · · · · · · · · · ·	· · ·		·		
Percent Moisture	%	NS	NS	25.7	31.1	21.2	23.1

Notes:

a. Ohio Voluntary Action Program generic numerical standards for direct contact with soil per OAC 3745-300-08, effective May 26, 2016.

b. Total chromium results were conservatively compared to the VAP direct contact standard for hexavalent chromium.

Notes: The aerial photo was acquired through the ESF Imagery web service. Aerial photography dated		Property Bou Ceotechnica	1 m	
and the second se	DISCLAIMER	October 2016		
HULL	Hull & Associates, Inc. (Hull) has furnished this map to the company identified in the title block (Client) for its sole and exclusive use as a preliminary planning and screening tool and field verification is necessary to confirm these data. This map is reproduced from geospatial information compiled from third-party sources which may change over time. Areas depicted by the map are approximate and may not be accurate to mapping, surveying or	Limited Environmental Review Cleveland Public Power Northern Storage Yard	Figure	
4 Hemisphere Way Phone: (440) 232-9945	Geotechnical Borings	2		
Bedford, Ohio 44146 Fax: (440) 232-9946 www.hullinc.com	of any kind, including but not limited to, the implied warranties of merchantability or fitness for a particular purpose. In no event will Hull, its owners, officers, employees or agents, be liable for damages of any kind arising out of the use of this map by Client or any other party.	North Marginal Road Cleveland, Cuyahoga County, Ohio		
Produced using ArcGIS 10.3		File Name: LAE001_01_Fig02_Borings.mxd Edited	d: 10/14/2016 By: mopel	

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

October 28, 2016

Ms. Lindsay Crow Hull & Associates, Inc. 4 Hemisphere Way Bedford, OH 44146

RE: Project: LAE001 Pace Project No.: 50157217

Dear Ms. Crow:

Enclosed are the analytical results for sample(s) received by the laboratory on October 21, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tina Say

Tina Sayer tina.sayer@pacelabs.com Project Manager

Enclosures

cc: Hull Data/EDD Admin Ms. Karyn Selle

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

CERTIFICATIONS

Project: LAE001 Pace Project No.: 50157217

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas/NELAP Certification #:E-10177 Kentucky UST Certification #: 0042 Kentucky WW Certification #:98019 Ohio VAP Certification #: CL-0065 Oklahoma Certification #: 2014-148 Texas Certification #: T104704355-15-9 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-10-00128

SAMPLE SUMMARY

Project:LAE001Pace Project No.:50157217

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50157217001	LAE001:BH9:S035055	Solid	10/18/16 16:08	10/21/16 08:30
50157217002	LAE001:BH13:S035055	Solid	10/17/16 14:44	10/21/16 08:30
50157217003	LAE001:TRIP:W101716	Water	10/17/16 08:00	10/21/16 08:30

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SAMPLE ANALYTE COUNT

Project:LAE001Pace Project No.:50157217

Lab ID	Sample ID	Method	Analysts	Analytes Reported
50157217001	 LAE001:BH9:S035055	EPA 8082	NPW	8
		EPA 6010	MJC	7
		EPA 7471	ILP	1
		EPA 8270	TBP	51
		EPA 8260	JLZ	50
		SM 2540G	GWA	1
50157217002	LAE001:BH13:S035055	EPA 8082	CPH	8
		EPA 6010	MJC	7
		EPA 7471	ILP	1
		EPA 8270	TBP	51
		EPA 8260	JLZ	50
		SM 2540G	GWA	1
50157217003	LAE001:TRIP:W101716	EPA 8260	JLZ	50

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SUMMARY OF DETECTION

Project: LAE001 F

Pace Pro	ject No.:	50157217

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50157217001	LAE001:BH9:S035055					
EPA 6010	Arsenic	104	mg/kg	1.3	10/26/16 11:10	
EPA 6010	Barium	156	mg/kg	1.3	10/26/16 11:10	
EPA 6010	Cadmium	0.63	mg/kg	0.63	10/26/16 11:10	
EPA 6010	Chromium	9.8	mg/kg	1.3	10/26/16 11:10	
EPA 6010	Lead	92.7	mg/kg	1.3	10/26/16 11:10	
EPA 6010	Selenium	3.7	mg/kg	1.3	10/26/16 11:10	
EPA 8270	2-Methylnaphthalene	0.49	mg/kg	0.42	10/24/16 14:24	
EPA 8260	Benzene	0.0091	mg/kg	0.0063	10/25/16 16:22	
EPA 8260	Toluene	0.025	mg/kg	0.0063	10/25/16 16:22	
EPA 8260	Xylene (Total)	0.019	mg/kg	0.013	10/25/16 16:22	
SM 2540G	Percent Moisture	21.2	%	0.10	10/24/16 12:43	
50157217002	LAE001:BH13:S035055					
EPA 6010	Arsenic	30.6	mg/kg	1.3	10/26/16 11:12	
EPA 6010	Barium	309	mg/kg	1.3	10/26/16 11:12	
EPA 6010	Cadmium	6.5	mg/kg	0.64	10/26/16 11:12	
EPA 6010	Chromium	27.8	mg/kg	1.3	10/26/16 11:12	
EPA 6010	Lead	328	mg/kg	1.3	10/26/16 11:12	
EPA 6010	Selenium	1.4	mg/kg	1.3	10/26/16 11:12	
EPA 7471	Mercury	0.41	mg/kg	0.26	10/25/16 10:09	
EPA 8260	Benzene	0.0079	mg/kg	0.0065	10/25/16 16:46	
EPA 8260	Toluene	0.017	mg/kg	0.0065	10/25/16 16:46	
SM 2540G	Percent Moisture	23.1	%	0.10	10/24/16 12:43	

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157217

Method: EPA 8082

Description:8082 GCS PCB SolidsClient:Hull & Associates, Inc. (Bedford)Date:October 28, 2016

General Information:

2 samples were analyzed for EPA 8082. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157217

Method: EPA 6010

Description:6010 MET ICPClient:Hull & Associates, Inc. (Bedford)Date:October 28, 2016

General Information:

2 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001

Pace Project No.: 50157217

Method: EPA 7471

Description:7471 MercuryClient:Hull & Associates, Inc. (Bedford)Date:October 28, 2016

General Information:

2 samples were analyzed for EPA 7471. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157217

Method: EPA 8270

Description:8270 MSSV SHORT LIST MICROWAVEClient:Hull & Associates, Inc. (Bedford)Date:October 28, 2016

General Information:

2 samples were analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 357688

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50157217002

- R1: RPD value was outside control limits.
 - MSD (Lab ID: 1654059)
 - Benzo(k)fluoranthene

Additional Comments:

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157217

Method: EPA 8260

Description:8260 MSV 5030 Low LevelClient:Hull & Associates, Inc. (Bedford)Date:October 28, 2016

General Information:

2 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 357824

S2: Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample reanalysis).

- LAE001:BH9:S035055 (Lab ID: 50157217001)
 - Toluene-d8 (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 357824

L0: Analyte recovery in the laboratory control sample (LCS) was outside QC limits.

• LCS (Lab ID: 1654521)

Acetone

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157217

Method:	EPA 8260
Description:	8260 MSV 5030 Low Level
Client:	Hull & Associates, Inc. (Bedford)
Date:	October 28, 2016

Analyte Comments:

QC Batch: 357824

1d: The internal standard response was below the laboratory acceptance limits and confirmed by reanalysis. The results reported are from the most QC compliant analysis and may be biased high. JLZ 10/26/16

• LAE001:BH13:S035055 (Lab ID: 50157217002)

• Dibromofluoromethane (S)

• LAE001:BH9:S035055 (Lab ID: 50157217001)

• Dibromofluoromethane (S)

PROJECT NARRATIVE

Project: LAE001

Pace Project No.: 50157217

Method: EPA 8260

Description:8260 MSVClient:Hull & Associates, Inc. (Bedford)Date:October 28, 2016

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

QC Batch: 357823

L3: Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.

• LCS (Lab ID: 1654519)

Acetone

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.

ANALYTICAL RESULTS

Project: LAE001

Pace Project No.: 50157217

Sample: LAE001:BH9:S035055	Lab ID: 501	57217001	Collected: 10/18/1	6 16:08	B Received: 10	/21/16 08:30 N	Aatrix: Solid	
Results reported on a "dry weigh	t" basis and are adj	iusted for p	percent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB Solids	Analytical Mether	nod: EPA 80	082 Preparation Met	hod: EF	PA 3546			
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.13	1	10/24/16 09:54	10/26/16 03:11	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.13	1	10/24/16 09:54	10/26/16 03:11	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.13	1	10/24/16 09:54	10/26/16 03:11	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.13	1	10/24/16 09:54	10/26/16 03:11	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.13	1	10/24/16 09:54	10/26/16 03:11	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.13	1	10/24/16 09:54	10/26/16 03:11	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.13	1	10/24/16 09:54	10/26/16 03:11	11096-82-5	
Surrogates								
Tetrachloro-m-xylene (S)	93	%.	24-99	1	10/24/16 09:54	10/26/16 03:11	877-09-8	
6010 MET ICP	Analytical Mether	nod: EPA 60	010 Preparation Met	hod: EF	PA 3050			
Arsenic	104	mg/kg	1.3	1	10/25/16 13:20	10/26/16 11:10	7440-38-2	
Barium	156	mg/kg	1.3	1	10/25/16 13:20	10/26/16 11:10	7440-39-3	
Cadmium	0.63	mg/kg	0.63	1	10/25/16 13:20	10/26/16 11:10	7440-43-9	
Chromium	9.8	mg/kg	1.3	1	10/25/16 13:20	10/26/16 11:10	7440-47-3	
Lead	92.7	mg/kg	1.3	1	10/25/16 13:20	10/26/16 11:10	7439-92-1	
Selenium	3.7	mg/kg	1.3	1		10/26/16 11:10		
Silver	ND	mg/kg	0.63	1		10/26/16 11:10		
7471 Mercury	Analytical Mether	nod: EPA 74	171 Preparation Met	hod: EF	PA 7471			
Mercury	ND	mg/kg	0.24	1	10/24/16 22:40	10/25/16 10:07	7439-97-6	
8270 MSSV SHORT LIST MICROW	VAVE Analytical Meth	nod: EPA 82	270 Preparation Met	hod: EF	PA 3546			
Acenaphthene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	83-32-9	
Acenaphthylene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	208-96-8	
Anthracene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	120-12-7	
Benzo(a)anthracene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	56-55-3	
Benzo(a)pyrene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	50-32-8	
Benzo(b)fluoranthene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	205-99-2	
Benzo(g,h,i)perylene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	191-24-2	
Benzo(k)fluoranthene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	207-08-9	
Butylbenzylphthalate	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	85-68-7	
4-Chloro-3-methylphenol	ND	mg/kg	0.83	1	10/23/16 22:27	10/24/16 14:24	59-50-7	
4-Chloroaniline	ND	mg/kg	0.83	1	10/23/16 22:27	10/24/16 14:24	106-47-8	
bis(2-Chloroethoxy)methane	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	111-91-1	
bis(2-Chloroethyl) ether	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	111-44-4	
bis(2chloro1methylethyl) ether	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	108-60-1	
2-Chloronaphthalene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	91-58-7	
2-Chlorophenol	ND	mg/kg	0.42	1		10/24/16 14:24		
Chrysene	ND	mg/kg	0.42	1		10/24/16 14:24		
Dibenz(a,h)anthracene	ND	mg/kg	0.42	1		10/24/16 14:24		
2,4-Dichlorophenol	ND	mg/kg	0.42	1		10/24/16 14:24		
Diethylphthalate	ND	mg/kg	0.42	1		10/24/16 14:24		
2,4-Dimethylphenol	ND	mg/kg	0.42	1		10/24/16 14:24		
Di-n-butylphthalate	ND	mg/kg	0.42	1		10/24/16 14:24		
			0.42		,, IO LE.LI			

ANALYTICAL RESULTS

Project: LAE001 Pace Project No.: 50157217

Sample: LAE001:BH9:S035055	Lab ID: 501	57217001	Collected: 10/18/1	6 16:08	B Received: 10	/21/16 08:30 N	latrix: Solid	
Results reported on a "dry weight" l	basis and are adj	usted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV SHORT LIST MICROWAV	/E Analytical Meth	nod: EPA 82	270 Preparation Meth	od: EP	A 3546			
2,4-Dinitrophenol	ND	mg/kg	2.0	1	10/23/16 22:27	10/24/16 14:24	51-28-5	
2,4-Dinitrotoluene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	121-14-2	
2,6-Dinitrotoluene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	606-20-2	
Di-n-octylphthalate	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	mg/kg	0.42	1		10/24/16 14:24		
Fluoranthene	ND	mg/kg	0.42	1	10/23/16 22:27	10/24/16 14:24	206-44-0	
Fluorene	ND	mg/kg	0.42	1		10/24/16 14:24		
Hexachlorocyclopentadiene	ND	mg/kg	0.42	1		10/24/16 14:24		
Hexachloroethane	ND	mg/kg	0.42	1		10/24/16 14:24		
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.42	1		10/24/16 14:24		
Isophorone	ND	mg/kg	0.42	1		10/24/16 14:24		
2-Methylnaphthalene	0.49	mg/kg	0.42	1		10/24/16 14:24		
2-Methylphenol(o-Cresol)	ND	mg/kg	0.42	1		10/24/16 14:24		
3&4-Methylphenol(m&p Cresol)	ND	mg/kg	0.83	1		10/24/16 14:24		
Naphthalene	ND	mg/kg	0.42	1		10/24/16 14:24	91-20-3	
Nitrobenzene	ND	mg/kg	0.42	1		10/24/16 14:24		
N-Nitroso-di-n-propylamine	ND	mg/kg	0.42	1		10/24/16 14:24		
N-Nitrosodiphenylamine	ND	mg/kg	0.42	1		10/24/16 14:24		
Phenanthrene	ND	mg/kg	0.42	1		10/24/16 14:24		
Phenol	ND	mg/kg	0.42	1		10/24/16 14:24		
Pyrene	ND	mg/kg	0.42	1		10/24/16 14:24		
2,4,5-Trichlorophenol	ND	mg/kg	0.42	1		10/24/16 14:24		
2,4,6-Trichlorophenol	ND	mg/kg	0.42	1		10/24/16 14:24		
Surrogates	ND	iiig/kg	0.42		10/23/10 22.27	10/24/10 14.24	00-00-2	
Nitrobenzene-d5 (S)	62	%.	22-97	1	10/23/16 22:27	10/24/16 14:24	4165-60-0	
Phenol-d5 (S)	69	%.	28-108	1		10/24/16 14:24		
2-Fluorophenol (S)	74	%.	23-110	1		10/24/16 14:24		
2,4,6-Tribromophenol (S)	69	%.	18-110	1		10/24/16 14:24		
2-Fluorobiphenyl (S)	61	%.	22-96	1		10/24/16 14:24		
p-Terphenyl-d14 (S)	59	%.	17-102	1		10/24/16 14:24		
8260 MSV 5030 Low Level	Analytical Meth				10,20,10 22.21			
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0063	1		10/25/16 16:22		
1,1,1-Trichloroethane	ND	mg/kg	0.0063	1		10/25/16 16:22		
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0063	1		10/25/16 16:22	79-34-5	
1,1,2-Trichloroethane	ND	mg/kg	0.0063	1		10/25/16 16:22		
1,1-Dichloroethane	ND	mg/kg	0.0063	1		10/25/16 16:22		
1,1-Dichloroethene	ND	mg/kg	0.0063	1		10/25/16 16:22	75-35-4	
1,2,4-Trichlorobenzene	ND	mg/kg	0.0063	1		10/25/16 16:22	120-82-1	
1,2,4-Trimethylbenzene	ND	mg/kg	0.0063	1		10/25/16 16:22	95-63-6	
1,2-Dichlorobenzene	ND	mg/kg	0.0063	1		10/25/16 16:22	95-50-1	
1,2-Dichloroethane	ND	mg/kg	0.0063	1		10/25/16 16:22	107-06-2	
1,2-Dichloropropane	ND	mg/kg	0.0063	1		10/25/16 16:22	78-87-5	
1,3-Dichloropropane	ND	mg/kg	0.0063	1		10/25/16 16:22	142-28-9	
1,4-Dichlorobenzene	ND	mg/kg	0.0063	1		10/25/16 16:22	106-46-7	
2-Butanone (MEK)	ND	mg/kg	0.032	1		10/25/16 16:22		
· · · ·		0.0						

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: LAE001

Pace Project No.: 50157217

Sample: LAE001:BH9:S035055	Lab ID: 501	57217001	Collected: 10/18/1	6 16:08	Received: 1	0/21/16 08:30	Matrix: Solid	
Results reported on a "dry weight	" basis and are adj	iusted for p	ercent moisture, sa	mple si	ze and any dil	utions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV 5030 Low Level	Analytical Mether	nod: EPA 82	260					
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.032	1		10/25/16 16:22	108-10-1	
Acetone	ND	mg/kg	0.13	1		10/25/16 16:22	67-64-1	L3
Benzene	0.0091	mg/kg	0.0063	1		10/25/16 16:22	71-43-2	
Bromodichloromethane	ND	mg/kg	0.0063	1		10/25/16 16:22	75-27-4	
Bromoform	ND	mg/kg	0.0063	1		10/25/16 16:22	75-25-2	
Bromomethane	ND	mg/kg	0.0063	1		10/25/16 16:22	74-83-9	
Carbon disulfide	ND	mg/kg	0.013	1		10/25/16 16:22	75-15-0	
Carbon tetrachloride	ND	mg/kg	0.0063	1		10/25/16 16:22	56-23-5	
Chlorobenzene	ND	mg/kg	0.0063	1		10/25/16 16:22	108-90-7	
Chloroethane	ND	mg/kg	0.0063	1		10/25/16 16:22	75-00-3	
Chloroform	ND	mg/kg	0.0063	1		10/25/16 16:22	67-66-3	
Chloromethane	ND	mg/kg	0.0063	1		10/25/16 16:22	74-87-3	
Dibromochloromethane	ND	mg/kg	0.0063	1		10/25/16 16:22	124-48-1	
Dibromomethane	ND	mg/kg	0.0063	1		10/25/16 16:22	74-95-3	
Dichlorodifluoromethane	ND	mg/kg	0.0063	1		10/25/16 16:22	75-71-8	
Ethyl methacrylate	ND	mg/kg	0.13	1		10/25/16 16:22	97-63-2	
Ethylbenzene	ND	mg/kg	0.0063	1		10/25/16 16:22	100-41-4	
sopropylbenzene (Cumene)	ND	mg/kg	0.0063	1		10/25/16 16:22	98-82-8	
Methyl-tert-butyl ether	ND	mg/kg	0.0063	1		10/25/16 16:22		
Methylene Chloride	ND	mg/kg	0.025	1		10/25/16 16:22	75-09-2	
Styrene	ND	mg/kg	0.0063	1		10/25/16 16:22	100-42-5	
Tetrachloroethene	ND	mg/kg	0.0063	1		10/25/16 16:22	127-18-4	
Toluene	0.025	mg/kg	0.0063	1		10/25/16 16:22	108-88-3	
Trichloroethene	ND	mg/kg	0.0063	1		10/25/16 16:22	79-01-6	
Trichlorofluoromethane	ND	mg/kg	0.0063	1		10/25/16 16:22	75-69-4	
Vinyl acetate	ND	mg/kg	0.13	1		10/25/16 16:22	108-05-4	
Vinyl chloride	ND	mg/kg	0.0063	1		10/25/16 16:22	75-01-4	
Xylene (Total)	0.019	mg/kg	0.013	1		10/25/16 16:22	1330-20-7	
cis-1,2-Dichloroethene	ND	mg/kg	0.0063	1		10/25/16 16:22	156-59-2	
cis-1,3-Dichloropropene	ND	mg/kg	0.0063	1		10/25/16 16:22	10061-01-5	
n-Hexane	ND	mg/kg	0.0063	1		10/25/16 16:22	110-54-3	
rans-1,2-Dichloroethene	ND	mg/kg	0.0063	1		10/25/16 16:22	156-60-5	
rans-1,3-Dichloropropene	ND	mg/kg	0.0063	1		10/25/16 16:22	10061-02-6	
Surrogates								
Dibromofluoromethane (S)	108	%.	70-128	1		10/25/16 16:22	1868-53-7	1d
Toluene-d8 (S)	158	%.	72-139	1		10/25/16 16:22	2037-26-5	S2
4-Bromofluorobenzene (S)	73	%.	65-127	1		10/25/16 16:22	460-00-4	
Percent Moisture	Analytical Mether	nod: SM 254	40G					
Percent Moisture	21.2	%	0.10	1		10/24/16 12:43		

ANALYTICAL RESULTS

Project: LAE001

Pace Project No.: 50157217

Sample: LAE001:BH13:S035055	Lab ID: 501	57217002	Collected: 10/17/2	16 14:44	Received: 10)/21/16 08:30 N	latrix: Solid	
Results reported on a "dry weight	t" basis and are ad	justed for p	oercent moisture, sa	ample s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB Solids	Analytical Met	hod: EPA 80	082 Preparation Met	hod: EP	A 3546			
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.13	1	10/26/16 11:20	10/27/16 01:03	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.13	1	10/26/16 11:20	10/27/16 01:03	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.13	1	10/26/16 11:20	10/27/16 01:03	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.13	1	10/26/16 11:20	10/27/16 01:03	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.13	1	10/26/16 11:20	10/27/16 01:03	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.13	1	10/26/16 11:20	10/27/16 01:03	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.13	1	10/26/16 11:20	10/27/16 01:03	11096-82-5	
Surrogates		00						
Tetrachloro-m-xylene (S)	56	%.	24-99	1	10/26/16 11:20	10/27/16 01:03	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Met	hod: EP	A 3050			
Arsenic	30.6	mg/kg	1.3	1	10/25/16 13:20	10/26/16 11:12	7440-38-2	
Barium	309	mg/kg	1.3	1	10/25/16 13:20	10/26/16 11:12	7440-39-3	
Cadmium	6.5	mg/kg	0.64	1		10/26/16 11:12		
Chromium	27.8	mg/kg	1.3	1		10/26/16 11:12		
Lead	328	mg/kg	1.3	1		10/26/16 11:12		
Selenium	1.4	mg/kg	1.3	1		10/26/16 11:12		
Silver	ND	mg/kg	0.64	1		10/26/16 11:12		
7471 Mercury	Analytical Met	hod: EPA 74	171 Preparation Met	hod: EP	A 7471			
Mercury	0.41	mg/kg	0.26	1	10/24/16 22:40	10/25/16 10:09	7439-97-6	
8270 MSSV SHORT LIST MICROW	AVE Analytical Met	hod: EPA 82	270 Preparation Met	hod: EP	A 3546			
Acenaphthene	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	83-32-9	
Acenaphthylene	ND	mg/kg	0.43	1		10/24/16 14:43		
Anthracene	ND	mg/kg	0.43	1		10/24/16 14:43		
Benzo(a)anthracene	ND	mg/kg	0.43	1		10/24/16 14:43		
Benzo(a)pyrene	ND	mg/kg	0.43	1		10/24/16 14:43		
Benzo(b)fluoranthene	ND	mg/kg	0.43	1		10/24/16 14:43		
Benzo(g,h,i)perylene	ND	mg/kg	0.43	1		10/24/16 14:43		
Benzo(k)fluoranthene	ND	mg/kg	0.43	1		10/24/16 14:43		
Butylbenzylphthalate	ND	mg/kg	0.43	1		10/24/16 14:43		
4-Chloro-3-methylphenol	ND	mg/kg	0.86	1		10/24/16 14:43		
4-Chloroaniline	ND	mg/kg	0.86	1		10/24/16 14:43		
bis(2-Chloroethoxy)methane	ND	mg/kg	0.43	1		10/24/16 14:43		
bis(2-Chloroethyl) ether	ND	mg/kg	0.43	1		10/24/16 14:43		
bis(2chloro1methylethyl) ether	ND	mg/kg	0.43	1		10/24/16 14:43		
2-Chloronaphthalene	ND	mg/kg	0.43	1		10/24/16 14:43		
2-Chlorophenol	ND	mg/kg	0.43	1		10/24/16 14:43		
Chrysene	ND	mg/kg	0.43	1		10/24/16 14:43		
-	ND							
Dibenz(a,h)anthracene		mg/kg	0.43	1		10/24/16 14:43		
2,4-Dichlorophenol	ND	mg/kg	0.43	1		10/24/16 14:43		
Diethylphthalate	ND	mg/kg	0.43	1		10/24/16 14:43		
2,4-Dimethylphenol	ND	mg/kg	0.43	1		10/24/16 14:43		
Di-n-butylphthalate	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	84-74-2	

ANALYTICAL RESULTS

Project: LAE001

Pace Project No.: 50157217

Sample: LAE001:BH13:S035055	Lab ID: 501	57217002	Collected: 10/17/1	6 14:44	Received: 10	/21/16 08:30 N	latrix: Solid	
Results reported on a "dry weight" bas	sis and are adj	usted for p	ercent moisture, sa	ample s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV SHORT LIST MICROWAVE	Analytical Meth	nod: EPA 82	70 Preparation Met	hod: EP	A 3546			
2,4-Dinitrophenol	ND	mg/kg	2.1	1	10/23/16 22:27	10/24/16 14:43	51-28-5	
2,4-Dinitrotoluene	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	121-14-2	
2,6-Dinitrotoluene	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	606-20-2	
Di-n-octylphthalate	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	117-81-7	
Fluoranthene	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	206-44-0	
Fluorene	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	86-73-7	
Hexachlorocyclopentadiene	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	77-47-4	
Hexachloroethane	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	67-72-1	
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.43	1	10/23/16 22:27	10/24/16 14:43	193-39-5	
Isophorone	ND	mg/kg	0.43	1		10/24/16 14:43		
2-Methylnaphthalene	ND	mg/kg	0.43	1		10/24/16 14:43		
2-Methylphenol(o-Cresol)	ND	mg/kg	0.43	1		10/24/16 14:43		
3&4-Methylphenol(m&p Cresol)	ND	mg/kg	0.86	1		10/24/16 14:43	00.01	
Naphthalene	ND	mg/kg	0.43	1		10/24/16 14:43	91-20-3	
Nitrobenzene	ND	mg/kg	0.43	1		10/24/16 14:43		
N-Nitroso-di-n-propylamine	ND	mg/kg	0.43	1		10/24/16 14:43		
N-Nitrosodiphenylamine	ND	mg/kg	0.43	1		10/24/16 14:43		
Phenanthrene	ND	mg/kg	0.43	1		10/24/16 14:43		
Phenol	ND	mg/kg	0.43	1		10/24/16 14:43		
Pyrene	ND	mg/kg	0.43	1		10/24/16 14:43		
2,4,5-Trichlorophenol	ND	mg/kg	0.43	1		10/24/16 14:43		
2,4,6-Trichlorophenol	ND	mg/kg	0.43	1		10/24/16 14:43		
Surrogates	ND	iiig/kg	0.45	1	10/23/10 22.27	10/24/10 14.43	00-00-2	
Nitrobenzene-d5 (S)	59	%.	22-97	1	10/23/16 22:27	10/24/16 14:43	4165-60-0	
Phenol-d5 (S)	64	%.	28-108	1		10/24/16 14:43		
2-Fluorophenol (S)	68	%.	23-110	1		10/24/16 14:43		
2,4,6-Tribromophenol (S)	61	%.	18-110	1		10/24/16 14:43		
2-Fluorobiphenyl (S)	58	%.	22-96	1		10/24/16 14:43		
p-Terphenyl-d14 (S)	54	%.	17-102	1		10/24/16 14:43		
8260 MSV 5030 Low Level	Analytical Meth				10,20,10 22.21	10/2 // 10 11:10		
	-			4		40/05/40 40:40	COO OO C	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0065	1		10/25/16 16:46		
1,1,1-Trichloroethane	ND	mg/kg	0.0065	1		10/25/16 16:46		
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0065	1		10/25/16 16:46		
1,1,2-Trichloroethane	ND	mg/kg	0.0065	1		10/25/16 16:46		
1,1-Dichloroethane	ND	mg/kg	0.0065	1		10/25/16 16:46		
1,1-Dichloroethene	ND	mg/kg	0.0065	1		10/25/16 16:46		
1,2,4-Trichlorobenzene	ND	mg/kg	0.0065	1		10/25/16 16:46	120-82-1	
1,2,4-Trimethylbenzene	ND	mg/kg	0.0065	1		10/25/16 16:46	95-63-6	
1,2-Dichlorobenzene	ND	mg/kg	0.0065	1		10/25/16 16:46	95-50-1	
1,2-Dichloroethane	ND	mg/kg	0.0065	1		10/25/16 16:46	107-06-2	
1,2-Dichloropropane	ND	mg/kg	0.0065	1		10/25/16 16:46	78-87-5	
1,3-Dichloropropane	ND	mg/kg	0.0065	1		10/25/16 16:46	142-28-9	
	ND	mg/kg	0.0065	1		10/25/16 16:46	106-46-7	
1,4-Dichlorobenzene	ND	iiig/kg	0.0005			10/20/10 10.40	100 40 1	

Collected: 10/17/16 14:44 Received: 10/21/16 08:30 Matrix: Solid

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: LAE001 Pace Project No.: 50157217

Sample: LAE001:BH13:S035055 Lab ID: 50157217002

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8260 MSV 5030 Low Level	Analytical Mether	nod: EPA 8260)					
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.032	1		10/25/16 16:46	108-10-1	
Acetone	ND	mg/kg	0.13	1		10/25/16 16:46	67-64-1	L3
Benzene	0.0079	mg/kg	0.0065	1		10/25/16 16:46	71-43-2	
Bromodichloromethane	ND	mg/kg	0.0065	1		10/25/16 16:46	75-27-4	
Bromoform	ND	mg/kg	0.0065	1		10/25/16 16:46	75-25-2	
Bromomethane	ND	mg/kg	0.0065	1		10/25/16 16:46	74-83-9	
Carbon disulfide	ND	mg/kg	0.013	1		10/25/16 16:46	75-15-0	
Carbon tetrachloride	ND	mg/kg	0.0065	1		10/25/16 16:46	56-23-5	
Chlorobenzene	ND	mg/kg	0.0065	1		10/25/16 16:46	108-90-7	
Chloroethane	ND	mg/kg	0.0065	1		10/25/16 16:46	75-00-3	
Chloroform	ND	mg/kg	0.0065	1		10/25/16 16:46	67-66-3	
Chloromethane	ND	mg/kg	0.0065	1		10/25/16 16:46	74-87-3	
Dibromochloromethane	ND	mg/kg	0.0065	1		10/25/16 16:46	124-48-1	
Dibromomethane	ND	mg/kg	0.0065	1		10/25/16 16:46	74-95-3	
Dichlorodifluoromethane	ND	mg/kg	0.0065	1		10/25/16 16:46	75-71-8	
Ethyl methacrylate	ND	mg/kg	0.13	1		10/25/16 16:46		
Ethylbenzene	ND	mg/kg	0.0065	1		10/25/16 16:46	100-41-4	
sopropylbenzene (Cumene)	ND	mg/kg	0.0065	1		10/25/16 16:46	98-82-8	
Aethyl-tert-butyl ether	ND	mg/kg	0.0065	1		10/25/16 16:46		
Methylene Chloride	ND	mg/kg	0.026	1		10/25/16 16:46	75-09-2	
Styrene	ND	mg/kg	0.0065	1		10/25/16 16:46	100-42-5	
- Tetrachloroethene	ND	mg/kg	0.0065	1		10/25/16 16:46	127-18-4	
Toluene	0.017	mg/kg	0.0065	1		10/25/16 16:46		
Frichloroethene	ND	mg/kg	0.0065	1		10/25/16 16:46		
Frichlorofluoromethane	ND	mg/kg	0.0065	1		10/25/16 16:46		
/inyl acetate	ND	mg/kg	0.13	1		10/25/16 16:46		
/inyl chloride	ND	mg/kg	0.0065	1		10/25/16 16:46		
(ylene (Total)	ND	mg/kg	0.013	1		10/25/16 16:46		
sis-1,2-Dichloroethene	ND	mg/kg	0.0065	1		10/25/16 16:46		
cis-1,3-Dichloropropene	ND	mg/kg	0.0065	1		10/25/16 16:46		
h-Hexane	ND	mg/kg	0.0065	1		10/25/16 16:46		
rans-1,2-Dichloroethene	ND	mg/kg	0.0065	1		10/25/16 16:46		
rans-1,3-Dichloropropene	ND	mg/kg	0.0065	1		10/25/16 16:46		
Surrogates			0.0000					
Dibromofluoromethane (S)	105	%.	70-128	1		10/25/16 16:46	1868-53-7	1d
Foluene-d8 (S)	131	%.	72-139	1		10/25/16 16:46		
4-Bromofluorobenzene (S)	73	%.	65-127	1		10/25/16 16:46		
Percent Moisture	Analytical Mether	nod: SM 2540	G					
Percent Moisture	23.1	%	0.10	1		10/24/16 12:43		

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: LAE001

Pace Project No.: 50157217

Sample: LAE001:TRIP:W101716	Lab ID: 501	57217003	Collected: 10/17/1	6 08:00	Received: 10/21/16 08:30 Matrix: Water	
Parameters	Results	Units	Report Limit	DF	Prepared Analyzed CAS No.	Qual
8260 MSV	Analytical Meth	nod: EPA 82	260			
Acetone	ND	ug/L	100	1	10/24/16 16:25 67-64-1	
Benzene	ND	ug/L	5.0	1	10/24/16 16:25 71-43-2	
Bromodichloromethane	ND	ug/L	5.0	1	10/24/16 16:25 75-27-4	
Bromoform	ND	ug/L	5.0	1	10/24/16 16:25 75-25-2	
Bromomethane	ND	ug/L	5.0	1	10/24/16 16:25 74-83-9	
2-Butanone (MEK)	ND	ug/L	25.0	1	10/24/16 16:25 78-93-3	
Carbon disulfide	ND	ug/L	10.0	1	10/24/16 16:25 75-15-0	
Carbon tetrachloride	ND	ug/L	5.0	1	10/24/16 16:25 56-23-5	
Chlorobenzene	ND	ug/L	5.0	1	10/24/16 16:25 108-90-7	
Chloroethane	ND	ug/L	5.0	1	10/24/16 16:25 75-00-3	
Chloroform	ND	ug/L	5.0	1	10/24/16 16:25 67-66-3	
Chloromethane	ND	ug/L	5.0	1	10/25/16 15:58 74-87-3	
Dibromochloromethane	ND	ug/L	5.0	1	10/24/16 16:25 124-48-1	
Dibromomethane	ND	ug/L	5.0	1	10/24/16 16:25 74-95-3	
1,2-Dichlorobenzene	ND	ug/L	5.0	1	10/24/16 16:25 95-50-1	
1,4-Dichlorobenzene	ND	ug/L	5.0	1	10/24/16 16:25 106-46-7	
Dichlorodifluoromethane	ND	ug/L	5.0	1	10/24/16 16:25 75-71-8	
1,1-Dichloroethane	ND	ug/L	5.0	1	10/24/16 16:25 75-34-3	
1.2-Dichloroethane	ND	ug/L	5.0	1	10/24/16 16:25 107-06-2	
1,1-Dichloroethene	ND	ug/L	5.0	1	10/24/16 16:25 75-35-4	
cis-1,2-Dichloroethene	ND	ug/L	5.0	1	10/24/16 16:25 156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	5.0	1	10/24/16 16:25 156-60-5	
1,2-Dichloropropane	ND	ug/L	5.0	1	10/24/16 16:25 78-87-5	
1,3-Dichloropropane	ND	ug/L	5.0	1	10/24/16 16:25 142-28-9	
cis-1,3-Dichloropropene	ND	ug/L	4.1	1	10/24/16 16:25 10061-01-5	
trans-1,3-Dichloropropene	ND	ug/L	4.1	1	10/24/16 16:25 10061-02-6	
Ethylbenzene	ND	ug/L	5.0	1	10/24/16 16:25 100-41-4	
Ethyl methacrylate	ND	ug/L	100	1	10/24/16 16:25 97-63-2	
n-Hexane	ND	ug/L	5.0	1	10/24/16 16:25 110-54-3	
Isopropylbenzene (Cumene)	ND	ug/L	5.0	1	10/24/16 16:25 98-82-8	
Methylene Chloride	ND	ug/L	5.0	1	10/24/16 16:25 75-09-2	
4-Methyl-2-pentanone (MIBK)	ND	ug/L	25.0	1	10/24/16 16:25 108-10-1	
Methyl-tert-butyl ether	ND	ug/L	4.0	1	10/24/16 16:25 1634-04-4	
Styrene	ND	ug/L	5.0	1	10/24/16 16:25 100-42-5	
1,1,1,2-Tetrachloroethane	ND	ug/L	5.0	1	10/24/16 16:25 630-20-6	
1,1,2,2-Tetrachloroethane	ND	ug/L	5.0	1	10/24/16 16:25 79-34-5	
Tetrachloroethene	ND	ug/L	5.0	1	10/24/16 16:25 127-18-4	
Toluene	ND	ug/L	5.0	1	10/24/16 16:25 108-88-3	
1,2,4-Trichlorobenzene	ND	ug/L	5.0	1	10/24/16 16:25 120-82-1	
1,1,1-Trichloroethane	ND	-	5.0	1	10/24/16 16:25 120-82-1	
	ND	ug/L ug/L		1	10/24/16 16:25 71-55-6	
1,1,2-Trichloroethane	ND		5.0 5.0	1	10/24/16 16:25 79-00-5	
Trichloroethene		ug/L				
Trichlorofluoromethane	ND	ug/L	5.0	1	10/24/16 16:25 75-69-4	
1,2,4-Trimethylbenzene	ND	ug/L	5.0	1	10/24/16 16:25 95-63-6	
Vinyl acetate	ND	ug/L	50.0	1	10/24/16 16:25 108-05-4	
Vinyl chloride	ND	ug/L	2.0	1	10/24/16 16:25 75-01-4	
Xylene (Total)	ND	ug/L	10.0	1	10/24/16 16:25 1330-20-7	

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: LAE001 Pace Project No.: 50157217

Sample: LAE001:TRIP:W101716 Lab ID: 50157217003 Collected: 10/17/16 08:00 Received: 10/21/16 08:30 Matrix: Water DF Parameters Results Units Report Limit Prepared Analyzed CAS No. Qual 8260 MSV Analytical Method: EPA 8260 Surrogates Dibromofluoromethane (S) 101 84-118 10/24/16 16:25 1868-53-7 %. 1 4-Bromofluorobenzene (S) 103 79-116 %. 1 10/24/16 16:25 460-00-4 Toluene-d8 (S) 97 %. 86-110 1 10/24/16 16:25 2037-26-5

QUALITY CONTROL DATA

Project:	LAE001												
Pace Project No.:	50157217												
QC Batch:	357783			Analys	is Method	d: E	PA 7471						
QC Batch Method:	EPA 7471			Analys	is Descrip	otion: 7	471 Mercury	/					
Associated Lab San	nples: 5015	57217001, 5	50157217002										
METHOD BLANK:	1654336			N	Aatrix: So	olid							
Associated Lab San	nples: 5015	57217001, 5	50157217002										
				Blank	F	Reporting							
Paran	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Mercury			mg/kg		ND	0.20	0 10/25/16	09:39					
LABORATORY CON	NTROL SAMP	2LE: 1654	1337										
				Spike	LC	S	LCS	% Re	с				
Paran	neter		Units	Conc.	Res	ult	% Rec	Limits	s Q	ualifiers			
Mercury			mg/kg	.49		0.48	98	80)-120		-		
MATRIX SPIKE & M	IATRIX SPIKE	E DUPLICA	TE: 16543;	38		1654339							
				MS	MSD								
		50	157127001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	r	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		mg/kg	ND	.57	.61	0.61	0.66	103	104	75-125	8	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

QC Batch: 357677	7		Analys	sis Method:	El	PA 6010						
QC Batch Method: EPA 30	050		Analys	sis Descript	ion: 60	010 MET						
Associated Lab Samples:	50157217001,	50157217002										
METHOD BLANK: 1654026	3		Ν	Matrix: Soli	d							
Associated Lab Samples:	50157217001,	50157217002										
			Blank	k R	eporting							
Parameter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Arsenic		mg/kg		ND	1.0	10/26/16	11:08		_			
Barium		mg/kg		ND	1.0	10/26/16						
Cadmium		mg/kg		ND	0.50	10/26/16	11:08					
Chromium		mg/kg		ND	1.0	10/26/16	11:08					
Lead		mg/kg		ND	1.0	10/26/16	11:08					
Selenium		mg/kg		ND	1.0	10/26/16						
Silver		mg/kg		ND	0.50	10/26/16	11:08					
LABORATORY CONTROL S		4027										
		4021	Spike	LCS		LCS	% Rec					
Parameter		Units	Conc.	Resu		% Rec	Limits		ualifiers			
						400				-		
Arsonic			50		50.2		80.	120				
		mg/kg ma/ka	50 50		50.2 49.4	100 99		-120 -120				
Barium		mg/kg	50	1	49.4	99	80	-120				
Barium Cadmium		mg/kg mg/kg)			80 80	-				
Arsenic Barium Cadmium Chromium Lead		mg/kg	50 50		49.4 50.6	99 101	80 80 80	-120 -120				
Barium Cadmium Chromium Lead		mg/kg mg/kg mg/kg	50 50 50		49.4 50.6 49.0	99 101 98	80 80 80 80	-120 -120 -120				
Barium Cadmium Chromium		mg/kg mg/kg mg/kg mg/kg	50 50 50 50		49.4 50.6 49.0 48.5	99 101 98 97	80 80 80 80 80	-120 -120 -120 -120				
Barium Cadmium Chromium Lead Selenium Silver		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	50 50 50 50 50 50 25		49.4 50.6 49.0 48.5 50.6 23.9	99 101 98 97 101	80 80 80 80 80	-120 -120 -120 -120 -120				
Barium Cadmium Chromium Lead Selenium Silver	PIKE DUPLIC	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	50 50 50 50 25 28		49.4 50.6 49.0 48.5 50.6	99 101 98 97 101	80 80 80 80 80	-120 -120 -120 -120 -120				
Barium Cadmium Chromium Lead Selenium Silver		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	50 50 50 25 28 MS	MSD	49.4 50.6 49.0 48.5 50.6 23.9 1654029	99 101 98 97 101 96	80 80 80 80 80 80	-120 -120 -120 -120 -120 -120 -120	% Pop		Max	
Barium Cadmium Chromium Lead Selenium Silver		mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	50 50 50 50 25 28		49.4 50.6 49.0 48.5 50.6 23.9	99 101 98 97 101	80 80 80 80 80	-120 -120 -120 -120 -120	% Rec Limits	RPD	Max RPD	Qua
Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATRIX SI Parameter	5	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg TE: 165402 0157242001	50 50 50 25 28 MS Spike	MSD Spike	49.4 50.6 49.0 48.5 50.6 23.9 1654029 MS	99 101 98 97 101 96 MSD	80 80 80 80 80 80	-120 -120 -120 -120 -120 -120 -120 -120		RPD 2		Qua
Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATRIX SI Parameter Arsenic	5 Units	mg/kg mg/kg mg/kg mg/kg mg/kg MTE: 16540 0157242001 Result	50 50 50 25 28 MS Spike Conc.	MSD Spike Conc.	49.4 50.6 49.0 48.5 50.6 23.9 1654029 MS Result	99 101 98 97 101 96 MSD Result	80 80 80 80 80 80 80 80 80 80 80	-120 -120 -120 -120 -120 -120 -120 -120	Limits		RPD	Qua
Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATRIX SI Parameter Arsenic Barium	5 Units mg/kg	mg/kg mg/kg mg/kg mg/kg mg/kg MTE: 165402 0157242001 Result 5.9	50 50 50 25 28 MS Spike Conc. 66.1	MSD Spike Conc. 65.8	49.4 50.6 49.0 48.5 50.6 23.9 1654029 MS Result 66.8	99 101 98 97 101 96 MSD Result 65.8	80 80 80 80 80 80 80 80 80 80 80 80 92	-120 -120 -120 -120 -120 -120 -120 -120	Limits 75-125	2	RPD 20	Qua
Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATRIX SI Parameter Arsenic Barium Cadmium	5 Units mg/kg mg/kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MTE: 165402 0157242001 <u>Result</u> 5.9 73.1	50 50 50 25 28 MS Spike Conc. 66.1 66.1	MSD Spike Conc. 65.8 65.8	49.4 50.6 49.0 48.5 50.6 23.9 1654029 MS Result 66.8 142	99 101 98 97 101 96 MSD Result 65.8 140	80 80 80 80 80 80 80 80 80 80 80 92 105	-120 -120 -120 -120 -120 -120 -120 -120	Limits 75-125 75-125	2 2	RPD 20 20	Qua
Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATRIX SI Parameter Arsenic Barium Cadmium Chromium	5 Units mg/kg mg/kg mg/kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MTE: 165402 0157242001 Result 5.9 73.1 ND	50 50 50 25 28 MS Spike Conc. 66.1 66.1 66.1	MSD Spike Conc. 65.8 65.8 65.8 65.8	49.4 50.6 49.0 48.5 50.6 23.9 1654029 MS Result 66.8 142 63.0	99 101 98 97 101 96 MSD Result 65.8 140 62.6	80 80 80 80 80 80 80 80 80 80 80 80 80 8	-120 -120 -120 -120 -120 -120 -120 -120	Limits 75-125 75-125 75-125	2 2 1	RPD 20 20 20	Qua
Barium Cadmium Chromium Lead Selenium Silver MATRIX SPIKE & MATRIX S	Units Units mg/kg mg/kg mg/kg mg/kg	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg MTE: 165402 0157242001 Result 5.9 73.1 ND 12.3	50 50 50 25 28 MS Spike Conc. 66.1 66.1 66.1 66.1	MSD Spike Conc. 65.8 65.8 65.8 65.8 65.8	49.4 50.6 49.0 48.5 50.6 23.9 1654029 MS Result 66.8 142 63.0 73.9	99 101 98 97 101 96 MSD Result 65.8 140 62.6 73.3	80 80 80 80 80 80 80 80 80 80 80 80 80 8	-120 -120 -120 -120 -120 -120 -120 -120	Limits 75-125 75-125 75-125 75-125	2 2 1	RPD 20 20 20 20 20	Qua

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

EPA 8260

8260 MSV 5030 Low

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001

Pace Project No.: 50157217

QC Batch Method:

QC Batch:

357824

Analysis Method:

Analysis Description:

Matrix: Solid

Associated Lab Samples: 50157217001, 50157217002

EPA 8260

METHOD BLANK: 1654520

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
,1,1,2-Tetrachloroethane	mg/kg	ND	0.0050	10/25/16 12:01	
,1,1-Trichloroethane	mg/kg	ND	0.0050	10/25/16 12:01	
,1,2,2-Tetrachloroethane	mg/kg	ND	0.0050	10/25/16 12:01	
,1,2-Trichloroethane	mg/kg	ND	0.0050	10/25/16 12:01	
,1-Dichloroethane	mg/kg	ND	0.0050	10/25/16 12:01	
,1-Dichloroethene	mg/kg	ND	0.0050	10/25/16 12:01	
,1-Dichlorobenzene	mg/kg	ND	0.0050	10/25/16 12:01	
,2,4-Trimethylbenzene	mg/kg	ND	0.0050	10/25/16 12:01	
,2-Dichlorobenzene	mg/kg	ND	0.0050	10/25/16 12:01	
	mg/kg	ND	0.0050	10/25/16 12:01	
,2-Dichloroethane		ND	0.0050	10/25/16 12:01	
,2-Dichloropropane	mg/kg				
,3-Dichloropropane	mg/kg	ND	0.0050	10/25/16 12:01	
,4-Dichlorobenzene	mg/kg	ND	0.0050	10/25/16 12:01	
2-Butanone (MEK)	mg/kg	ND	0.025	10/25/16 12:01	
I-Methyl-2-pentanone (MIBK)	mg/kg	ND	0.025	10/25/16 12:01	
Acetone	mg/kg	ND	0.10	10/25/16 12:01	
Benzene	mg/kg	ND	0.0050	10/25/16 12:01	
Bromodichloromethane	mg/kg	ND	0.0050	10/25/16 12:01	
Bromoform	mg/kg	ND	0.0050	10/25/16 12:01	
Bromomethane	mg/kg	ND	0.0050	10/25/16 12:01	
Carbon disulfide	mg/kg	ND	0.010	10/25/16 12:01	
Carbon tetrachloride	mg/kg	ND	0.0050	10/25/16 12:01	
Chlorobenzene	mg/kg	ND	0.0050	10/25/16 12:01	
Chloroethane	mg/kg	ND	0.0050	10/25/16 12:01	
Chloroform	mg/kg	ND	0.0050	10/25/16 12:01	
chloromethane	mg/kg	ND	0.0050	10/25/16 12:01	
is-1,2-Dichloroethene	mg/kg	ND	0.0050	10/25/16 12:01	
is-1,3-Dichloropropene	mg/kg	ND	0.0050	10/25/16 12:01	
Dibromochloromethane	mg/kg	ND	0.0050	10/25/16 12:01	
Dibromomethane	mg/kg	ND	0.0050	10/25/16 12:01	
Dichlorodifluoromethane	mg/kg	ND	0.0050	10/25/16 12:01	
Ethyl methacrylate	mg/kg	ND	0.10	10/25/16 12:01	
Ethylbenzene	mg/kg	ND	0.0050	10/25/16 12:01	
sopropylbenzene (Cumene)	mg/kg	ND	0.0050	10/25/16 12:01	
lethyl-tert-butyl ether	mg/kg	ND	0.0050	10/25/16 12:01	
lethylene Chloride	mg/kg	ND	0.020	10/25/16 12:01	
n-Hexane	mg/kg	ND	0.0050	10/25/16 12:01	
Styrene	mg/kg	ND	0.0050	10/25/16 12:01	
etrachloroethene	mg/kg	ND	0.0050	10/25/16 12:01	
oluene	mg/kg	ND	0.0050	10/25/16 12:01	
rans-1,2-Dichloroethene	mg/kg	ND	0.0050	10/25/16 12:01	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157217

METHOD BLANK: 1654520		Matrix:	Solid		
Associated Lab Samples: 50	157217001, 50157217002				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	mg/kg	ND	0.0050	10/25/16 12:01	
Trichloroethene	mg/kg	ND	0.0050	10/25/16 12:01	
Trichlorofluoromethane	mg/kg	ND	0.0050	10/25/16 12:01	
Vinyl acetate	mg/kg	ND	0.10	10/25/16 12:01	
Vinyl chloride	mg/kg	ND	0.0050	10/25/16 12:01	
Xylene (Total)	mg/kg	ND	0.010	10/25/16 12:01	
4-Bromofluorobenzene (S)	%.	102	65-127	10/25/16 12:01	
Dibromofluoromethane (S)	%.	96	70-128	10/25/16 12:01	
Toluene-d8 (S)	%.	99	72-139	10/25/16 12:01	
LABORATORY CONTROL SAM	/PLE: 1654521				

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	mg/kg	.05	0.048	96	71-125	
1,1,1-Trichloroethane	mg/kg	.05	0.045	91	67-123	
1,1,2,2-Tetrachloroethane	mg/kg	.05	0.046	92	67-129	
1,1,2-Trichloroethane	mg/kg	.05	0.049	99	74-125	
1,1-Dichloroethane	mg/kg	.05	0.048	96	69-115	
1,1-Dichloroethene	mg/kg	.05	0.051	101	64-133	
1,2,4-Trichlorobenzene	mg/kg	.05	0.047	94	55-120	
1,2,4-Trimethylbenzene	mg/kg	.05	0.047	95	66-118	
1,2-Dichlorobenzene	mg/kg	.05	0.045	90	71-115	
1,2-Dichloroethane	mg/kg	.05	0.041	82	71-121	
1,2-Dichloropropane	mg/kg	.05	0.052	103	74-119	
1,3-Dichloropropane	mg/kg	.05	0.051	102	75-121	
1,4-Dichlorobenzene	mg/kg	.05	0.046	92	66-112	
2-Butanone (MEK)	mg/kg	.25	0.32	127	61-129	
4-Methyl-2-pentanone (MIBK)	mg/kg	.25	0.25	102	70-129	
Acetone	mg/kg	.25	0.40	160	37-158 l	_0
Benzene	mg/kg	.05	0.051	102	72-120	
Bromodichloromethane	mg/kg	.05	0.046	92	72-114	
Bromoform	mg/kg	.05	0.043	85	56-125	
Bromomethane	mg/kg	.05	0.051	102	41-175	
Carbon disulfide	mg/kg	.05	0.050	99	58-130	
Carbon tetrachloride	mg/kg	.05	0.045	90	73-129	
Chlorobenzene	mg/kg	.05	0.047	94	72-115	
Chloroethane	mg/kg	.05	0.048	96	52-154	
Chloroform	mg/kg	.05	0.045	89	66-116	
Chloromethane	mg/kg	.05	0.046	91	49-139	
cis-1,2-Dichloroethene	mg/kg	.05	0.049	99	74-115	
cis-1,3-Dichloropropene	mg/kg	.05	0.050	100	74-122	
Dibromochloromethane	mg/kg	.05	0.046	93	72-123	
Dibromomethane	mg/kg	.05	0.047	94	78-118	
Dichlorodifluoromethane	mg/kg	.05	0.059	118	31-182	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157217

LABORATORY CONTROL SAMPLE: 1654521

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Ethyl methacrylate	mg/kg	.2	0.21	104	73-136	
Ethylbenzene	mg/kg	.05	0.049	99	70-121	
Isopropylbenzene (Cumene)	mg/kg	.05	0.049	97	78-130	
Methyl-tert-butyl ether	mg/kg	.05	0.047	94	68-123	
Methylene Chloride	mg/kg	.05	0.047	94	57-126	
n-Hexane	mg/kg	.05	0.051	102	64-124	
Styrene	mg/kg	.05	0.050	100	71-121	
Tetrachloroethene	mg/kg	.05	0.048	97	66-118	
Toluene	mg/kg	.05	0.044	89	68-121	
trans-1,2-Dichloroethene	mg/kg	.05	0.050	99	71-120	
trans-1,3-Dichloropropene	mg/kg	.05	0.050	100	72-127	
Trichloroethene	mg/kg	.05	0.047	94	73-120	
Trichlorofluoromethane	mg/kg	.05	0.049	98	61-158	
Vinyl acetate	mg/kg	.2	0.18	92	76-150	
Vinyl chloride	mg/kg	.05	0.050	99	54-155	
Xylene (Total)	mg/kg	.15	0.15	100	69-122	
4-Bromofluorobenzene (S)	%.			101	65-127	
Dibromofluoromethane (S)	%.			93	70-128	
Toluene-d8 (S)	%.			98	72-139	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001 50157217

Pace Project No.:

QC Batch: 357823	Analysis Method:	EPA 8260	
QC Batch Method: EPA 8260	Analysis Description:	8260 MSV	
Associated Lab Samples: 50157217003			
METHOD BLANK: 1654518	Matrix: Water		
Associated Lab Samples: 50157217003			

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L	ND	5.0	10/24/16 10:23	
1,1,1-Trichloroethane	ug/L	ND	5.0	10/24/16 10:23	
1,1,2,2-Tetrachloroethane	ug/L	ND	5.0	10/24/16 10:23	
1,1,2-Trichloroethane	ug/L	ND	5.0	10/24/16 10:23	
1,1-Dichloroethane	ug/L	ND	5.0	10/24/16 10:23	
1,1-Dichloroethene	ug/L	ND	5.0	10/24/16 10:23	
1,2,4-Trichlorobenzene	ug/L	ND	5.0	10/24/16 10:23	
1,2,4-Trimethylbenzene	ug/L	ND	5.0	10/24/16 10:23	
1,2-Dichlorobenzene	ug/L	ND	5.0	10/24/16 10:23	
1,2-Dichloroethane	ug/L	ND	5.0	10/24/16 10:23	
1,2-Dichloropropane	ug/L	ND	5.0	10/24/16 10:23	
1,3-Dichloropropane	ug/L	ND	5.0	10/24/16 10:23	
1,4-Dichlorobenzene	ug/L	ND	5.0	10/24/16 10:23	
2-Butanone (MEK)	ug/L	ND	25.0	10/24/16 10:23	
4-Methyl-2-pentanone (MIBK)	ug/L	ND	25.0	10/24/16 10:23	
Acetone	ug/L	ND	100	10/24/16 10:23	
Benzene	ug/L	ND	5.0	10/24/16 10:23	
Bromodichloromethane	ug/L	ND	5.0	10/24/16 10:23	
Bromoform	ug/L	ND	5.0	10/24/16 10:23	
Bromomethane	ug/L	ND	5.0	10/24/16 10:23	
Carbon disulfide	ug/L	ND	10.0	10/24/16 10:23	
Carbon tetrachloride	ug/L	ND	5.0	10/24/16 10:23	
Chlorobenzene	ug/L	ND	5.0	10/24/16 10:23	
Chloroethane	ug/L	ND	5.0	10/24/16 10:23	
Chloroform	ug/L	ND	5.0	10/24/16 10:23	
Chloromethane	ug/L	ND	5.0	10/24/16 10:23	
cis-1,2-Dichloroethene	ug/L	ND	5.0	10/24/16 10:23	
cis-1,3-Dichloropropene	ug/L	ND	4.1	10/24/16 10:23	
Dibromochloromethane	ug/L	ND	5.0	10/24/16 10:23	
Dibromomethane	ug/L	ND	5.0	10/24/16 10:23	
Dichlorodifluoromethane	ug/L	ND	5.0	10/24/16 10:23	
Ethyl methacrylate	ug/L	ND	100	10/24/16 10:23	
Ethylbenzene	ug/L	ND	5.0	10/24/16 10:23	
lsopropylbenzene (Cumene)	ug/L	ND	5.0	10/24/16 10:23	
Methyl-tert-butyl ether	ug/L	ND	4.0	10/24/16 10:23	
Methylene Chloride	ug/L	ND	5.0	10/24/16 10:23	
n-Hexane	ug/L	ND	5.0	10/24/16 10:23	
Styrene	ug/L	ND	5.0	10/24/16 10:23	
Tetrachloroethene	ug/L	ND	5.0	10/24/16 10:23	
Toluene	ug/L	ND	5.0	10/24/16 10:23	
trans-1,2-Dichloroethene	ug/L	ND	5.0	10/24/16 10:23	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157217

METHOD BLANK: 1654518		Matrix:	Water		
Associated Lab Samples: 5015721	17003				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	ug/L	ND	4.1	10/24/16 10:23	
Trichloroethene	ug/L	ND	5.0	10/24/16 10:23	
Trichlorofluoromethane	ug/L	ND	5.0	10/24/16 10:23	
Vinyl acetate	ug/L	ND	50.0	10/24/16 10:23	
Vinyl chloride	ug/L	ND	2.0	10/24/16 10:23	
Xylene (Total)	ug/L	ND	10.0	10/24/16 10:23	
4-Bromofluorobenzene (S)	%.	101	79-116	10/24/16 10:23	
Dibromofluoromethane (S)	%.	103	84-118	10/24/16 10:23	
Toluene-d8 (S)	%.	96	86-110	10/24/16 10:23	

LABORATORY CONTROL SAMPLE: 1654519

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
1,1,1,2-Tetrachloroethane	ug/L		51.9	104	74-130	
1,1,1-Trichloroethane	ug/L	50	48.5	97	72-123	
1,1,2,2-Tetrachloroethane	ug/L	50	45.3	91	72-124	
1,1,2-Trichloroethane	ug/L	50	46.6	93	75-125	
1,1-Dichloroethane	ug/L	50	49.1	98	70-120	
1,1-Dichloroethene	ug/L	50	50.3	101	69-127	
1,2,4-Trichlorobenzene	ug/L	50	50.6	101	66-126	
1,2,4-Trimethylbenzene	ug/L	50	48.9	98	73-125	
1,2-Dichlorobenzene	ug/L	50	46.5	93	77-122	
1,2-Dichloroethane	ug/L	50	44.6	89	70-123	
1,2-Dichloropropane	ug/L	50	52.0	104	77-124	
1,3-Dichloropropane	ug/L	50	49.9	100	77-123	
1,4-Dichlorobenzene	ug/L	50	48.1	96	75-117	
2-Butanone (MEK)	ug/L	250	294	118	60-135	
4-Methyl-2-pentanone (MIBK)	ug/L	250	234	94	66-134	
Acetone	ug/L	250	377	151	47-144 l	_3
Benzene	ug/L	50	50.6	101	76-122	
Bromodichloromethane	ug/L	50	48.9	98	71-124	
Bromoform	ug/L	50	46.7	93	60-125	
Bromomethane	ug/L	50	50.1	100	23-194	
Carbon disulfide	ug/L	50	49.3	99	63-130	
Carbon tetrachloride	ug/L	50	49.1	98	73-133	
Chlorobenzene	ug/L	50	46.9	94	76-118	
Chloroethane	ug/L	50	50.1	100	50-147	
Chloroform	ug/L	50	45.9	92	70-119	
Chloromethane	ug/L	50	44.3	89	52-136	
cis-1,2-Dichloroethene	ug/L	50	51.4	103	74-120	
cis-1,3-Dichloropropene	ug/L	50	52.3	105	71-134	
Dibromochloromethane	ug/L	50	49.1	98	73-127	
Dibromomethane	ug/L	50	47.9	96	75-124	
Dichlorodifluoromethane	ug/L	50	54.8	110	39-166	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157217

LABORATORY CONTROL SAMPLE: 1654519

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Ethyl methacrylate	ug/L	200	203	102	73-136	
Ethylbenzene	ug/L	50	50.9	102	75-123	
Isopropylbenzene (Cumene)	ug/L	50	49.3	99	84-134	
Methyl-tert-butyl ether	ug/L	50	48.5	97	65-131	
Methylene Chloride	ug/L	50	46.6	93	66-130	
n-Hexane	ug/L	50	52.2	104	64-131	
Styrene	ug/L	50	50.9	102	78-128	
Tetrachloroethene	ug/L	50	48.1	96	69-119	
Toluene	ug/L	50	45.2	90	74-122	
trans-1,2-Dichloroethene	ug/L	50	50.0	100	72-122	
trans-1,3-Dichloropropene	ug/L	50	53.4	107	66-135	
Trichloroethene	ug/L	50	47.0	94	75-123	
Trichlorofluoromethane	ug/L	50	51.5	103	58-148	
Vinyl acetate	ug/L	200	213	106	67-154	
Vinyl chloride	ug/L	50	49.4	99	61-147	
Xylene (Total)	ug/L	150	152	101	75-127	
4-Bromofluorobenzene (S)	%.			103	79-116	
Dibromofluoromethane (S)	%.			96	84-118	
Toluene-d8 (S)	%.			99	86-110	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157217	7											
QC Batch: 357701			Analysi	s Method	: El	PA 8082						
QC Batch Method: EPA 354	46		Analysi	s Descrip	tion: 80	82 GCS PC	В					
Associated Lab Samples: 5	015721700	1	-									
METHOD BLANK: 1654112			M	latrix: Sol	id							
Associated Lab Samples: 5	015721700	1										
			Blank	R	eporting							
Parameter		Units	Result		Limit	Analyz	ed	Qualifiers				
PCB-1016 (Aroclor 1016)		mg/kg		ND	0.099	10/26/16	01:25		_			
PCB-1221 (Aroclor 1221)		mg/kg		ND	0.099	10/26/16	01:25					
PCB-1232 (Aroclor 1232)		mg/kg		ND	0.099	10/26/16	01:25					
PCB-1242 (Aroclor 1242)		mg/kg		ND	0.099	10/26/16	01:25					
PCB-1248 (Aroclor 1248)		mg/kg		ND	0.099	10/26/16						
PCB-1254 (Aroclor 1254)		mg/kg		ND	0.099	10/26/16						
PCB-1260 (Aroclor 1260)		mg/kg		ND	0.099	10/26/16						
Tetrachloro-m-xylene (S)		%.		71	24-99	10/26/16	01:25					
LABORATORY CONTROL SA	MPLE: 1	654113										
LABORATORY CONTROL SA	MPLE: 1		Spike	LCS		LCS	% Rec					
LABORATORY CONTROL SA Parameter	MPLE: 1	654113 Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits	Q	ualifiers			
Parameter	MPLE: 1		•				Limits	Q -107	ualifiers			
Parameter PCB-1016 (Aroclor 1016)	MPLE: 1	Units	Conc.		ult	% Rec	Limits 40-		ualifiers	_		
Parameter PCB-1016 (Aroclor 1016) PCB-1260 (Aroclor 1260)	MPLE: 1	Units mg/kg	Conc.		ult 0.13	% Rec 78	Limits 40- 41-	.107	ualifiers	_		
Parameter PCB-1016 (Aroclor 1016) PCB-1260 (Aroclor 1260) Tetrachloro-m-xylene (S)		Units mg/kg mg/kg %.	Conc. .17 .17		ult 0.13	% Rec 78 89	Limits 40- 41-	-107 -110	ualifiers	_		
Parameter PCB-1016 (Aroclor 1016) PCB-1260 (Aroclor 1260) Tetrachloro-m-xylene (S)		Units mg/kg mg/kg %.	Conc. .17 .17		ult 0.13 0.15	% Rec 78 89	Limits 40- 41-	-107 -110	ualifiers	_		
Parameter PCB-1016 (Aroclor 1016) PCB-1260 (Aroclor 1260) Tetrachloro-m-xylene (S)		Units mg/kg mg/kg %.	Conc. .17 .17	Resu	ult 0.13 0.15	% Rec 78 89	Limits 40- 41-	-107 -110	ualifiers % Rec	-	Мах	
		Units mg/kg mg/kg %. CATE: 165411	Conc. .17 .17 .17	Resu	0.13 0.15 1654115	% Rec 78 89 72	Limits 40- 41- 24	-107 -110 4-99		RPD		Qua
Parameter PCB-1016 (Aroclor 1016) PCB-1260 (Aroclor 1260) Tetrachloro-m-xylene (S) MATRIX SPIKE & MATRIX SP Parameter	IKE DUPLI	Units mg/kg mg/kg %. CATE: 165411 50157217001 Result	Conc. .17 .17 .17	Resu MSD Spike	ult 0.13 0.15 1654115 MS	% Rec 78 89 72 MSD	Limits 40- 41- 24 MS	-107 -110 4-99 MSD	% Rec	RPD		Qua
Parameter PCB-1016 (Aroclor 1016) PCB-1260 (Aroclor 1260) Tetrachloro-m-xylene (S) MATRIX SPIKE & MATRIX SP	IKE DUPLI	Units mg/kg mg/kg %. CATE: 165411 50157217001 Result ND	Conc. .17 .17 .17	MSD Spike Conc.	0.13 0.15 1654115 MS Result	% Rec 78 89 72 MSD Result	Limits 40- 41: 24 MS % Rec	-107 -110 4-99 MSD % Rec	% Rec Limits 10-141		RPD	Qua

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

QC Batch: 358147	47 Analysis Method: EPA 8082											
QC Batch Method: EPA 354	46		Analys	is Descripti	on: 80	82 GCS P0	СВ					
Associated Lab Samples: 5	015721700	2										
METHOD BLANK: 1655728			N	Atrix: Solid	d							
Associated Lab Samples: 5	015721700	2										
_			Blank		porting							
Parameter		Units	Result	t	Limit	Analyz	.ed	Qualifiers				
PCB-1016 (Aroclor 1016)		mg/kg		ND	0.10	10/26/16						
PCB-1221 (Aroclor 1221)		mg/kg		ND	0.10	10/26/16						
PCB-1232 (Aroclor 1232)		mg/kg		ND	0.10							
PCB-1242 (Aroclor 1242) PCB-1248 (Aroclor 1248)		mg/kg mg/kg		ND ND	0.10 0.10	10/26/16 10/26/16						
PCB-1248 (Aroclor 1248) PCB-1254 (Aroclor 1254)		mg/kg		ND	0.10	10/26/16						
PCB-1260 (Aroclor 1260)		mg/kg		ND	0.10	10/26/16						
Tetrachloro-m-xylene (S)		%.		79	24-99	10/26/16	19:09					
LABORATORY CONTROL SA	MPLE: 1	655729										
			Spike	LCS		LCS	% Rec					
Parameter		Units	Conc.	Resul	t ç	% Rec	Limits	Qı	alifiers			
PCB-1016 (Aroclor 1016)		mg/kg	.16		0.15	92	40	-107		•		
PCB-1260 (Aroclor 1260)		mg/kg	.16		0.18	107	41	-110				
Tetrachloro-m-xylene (S)		%.				77	2	4-99				
MATRIX SPIKE & MATRIX SP		CATE: 16557	30		1655731							
			MS	MSD								
		50157353001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
PCB-1016 (Aroclor 1016)	mg/kg	ND	.16	.17	0.14	0.14	84	86	10-141	2		
PCB-1260 (Aroclor 1260)	mg/kg	ND	.16	.17	0.15	0.16	93	95	10-131	2	20	
Tetrachloro-m-xylene (S)	%.						81	81	24-99			
MATRIX SPIKE & MATRIX SP		CATE: 16557	32		1655733							
			MS	MSD								
D		50157353002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	~
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
PCB-1016 (Aroclor 1016)	mg/kg	ND	.17	.17	0.16	0.16	86	88	10-141	2		
PCB-1260 (Aroclor 1260) Tetrachloro-m-xylene (S)	mg/kg	ND	.17	.17	0.17	0.17	97	97	10-131	0	20	
	%.						81	82	24-99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001

Pace Project No.: 50157217

QC Batch Method:

QC Batch:

357688

EPA 3546

Analysis Method: Analysis Description:

Matrix: Solid

EPA 8270 8270 Solid MSSV Microwave Short Spike

Associated Lab Samples: 50157217001, 50157217002

METHOD BLANK: 1654056

Associated Lab Samples: 50157217001, 50157217002

Develop	11-21-	Blank	Reporting	A	0
Parameter	Units	Result	Limit	Analyzed	Qualifiers
2,4,5-Trichlorophenol	mg/kg	ND	0.33	10/24/16 13:46	
4,6-Trichlorophenol	mg/kg	ND	0.33	10/24/16 13:46	
,4-Dichlorophenol	mg/kg	ND	0.33	10/24/16 13:46	
,4-Dimethylphenol	mg/kg	ND	0.33	10/24/16 13:46	
4-Dinitrophenol	mg/kg	ND	1.6	10/24/16 13:46	
4-Dinitrotoluene	mg/kg	ND	0.33	10/24/16 13:46	
6-Dinitrotoluene	mg/kg	ND	0.33	10/24/16 13:46	
Chloronaphthalene	mg/kg	ND	0.33	10/24/16 13:46	
Chlorophenol	mg/kg	ND	0.33	10/24/16 13:46	
Methylnaphthalene	mg/kg	ND	0.33	10/24/16 13:46	
Methylphenol(o-Cresol)	mg/kg	ND	0.33	10/24/16 13:46	
&4-Methylphenol(m&p Cresol)	mg/kg	ND	0.66	10/24/16 13:46	
Chloro-3-methylphenol	mg/kg	ND	0.66	10/24/16 13:46	
Chloroaniline	mg/kg	ND	0.66	10/24/16 13:46	
cenaphthene	mg/kg	ND	0.33	10/24/16 13:46	
enaphthylene	mg/kg	ND	0.33	10/24/16 13:46	
thracene	mg/kg	ND	0.33	10/24/16 13:46	
nzo(a)anthracene	mg/kg	ND	0.33	10/24/16 13:46	
nzo(a)pyrene	mg/kg	ND	0.33	10/24/16 13:46	
nzo(b)fluoranthene	mg/kg	ND	0.33	10/24/16 13:46	
nzo(g,h,i)perylene	mg/kg	ND	0.33	10/24/16 13:46	
nzo(k)fluoranthene	mg/kg	ND	0.33	10/24/16 13:46	
(2-Chloroethoxy)methane	mg/kg	ND	0.33	10/24/16 13:46	
(2-Chloroethyl) ether	mg/kg	ND	0.33	10/24/16 13:46	
(2-Ethylhexyl)phthalate	mg/kg	ND	0.33	10/24/16 13:46	
(2chloro1methylethyl) ether	mg/kg	ND	0.33	10/24/16 13:46	
tylbenzylphthalate	mg/kg	ND	0.33	10/24/16 13:46	
rysene	mg/kg	ND	0.33	10/24/16 13:46	
n-butylphthalate	mg/kg	ND	0.33	10/24/16 13:46	
-n-octylphthalate	mg/kg	ND	0.33	10/24/16 13:46	
ibenz(a,h)anthracene	mg/kg	ND	0.33	10/24/16 13:46	
iethylphthalate	mg/kg	ND	0.33	10/24/16 13:46	
uoranthene	mg/kg	ND	0.33	10/24/16 13:46	
uorene	mg/kg	ND	0.33	10/24/16 13:46	
exachlorocyclopentadiene	mg/kg	ND	0.33	10/24/16 13:46	
exachloroethane	mg/kg	ND	0.33	10/24/16 13:46	
ideno(1,2,3-cd)pyrene	mg/kg	ND	0.33	10/24/16 13:46	
ophorone	mg/kg	ND	0.33	10/24/16 13:46	
-Nitroso-di-n-propylamine	mg/kg	ND	0.33	10/24/16 13:46	
-Nitrosodiphenylamine	mg/kg	ND	0.33	10/24/16 13:46	
aphthalene	mg/kg	ND	0.33	10/24/16 13:46	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157217

METHOD BLANK: 16540	56	Matrix:	Solid		
Associated Lab Samples:	50157217001, 50157217002				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Nitrobenzene	mg/kg	ND	0.33	10/24/16 13:46	
Phenanthrene	mg/kg	ND	0.33	10/24/16 13:46	
Phenol	mg/kg	ND	0.33	10/24/16 13:46	
Pyrene	mg/kg	ND	0.33	10/24/16 13:46	
2,4,6-Tribromophenol (S)	%.	63	18-110	10/24/16 13:46	
2-Fluorobiphenyl (S)	%.	55	22-96	10/24/16 13:46	
2-Fluorophenol (S)	%.	69	23-110	10/24/16 13:46	
Nitrobenzene-d5 (S)	%.	58	22-97	10/24/16 13:46	
p-Terphenyl-d14 (S)	%.	57	17-102	10/24/16 13:46	
Phenol-d5 (S)	%.	64	28-108	10/24/16 13:46	

LABORATORY CONTROL SAMPLE: 1654057

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2,4-Dinitrotoluene	mg/kg	3.3	2.0	59	37-115	
2-Chlorophenol	mg/kg	3.3	2.1	64	44-100	
2-Methylnaphthalene	mg/kg	3.3	2.7	80	33-110	
4-Chloro-3-methylphenol	mg/kg	3.3	2.4	74	42-113	
Acenaphthene	mg/kg	3.3	2.0	61	44-102	
Acenaphthylene	mg/kg	3.3	2.1	63	44-102	
Anthracene	mg/kg	3.3	2.2	68	48-107	
Benzo(a)anthracene	mg/kg	3.3	2.3	68	50-105	
Benzo(a)pyrene	mg/kg	3.3	2.0	61	48-116	
Benzo(b)fluoranthene	mg/kg	3.3	1.9	58	45-114	
Benzo(g,h,i)perylene	mg/kg	3.3	1.9	58	43-112	
Benzo(k)fluoranthene	mg/kg	3.3	2.0	60	47-114	
Chrysene	mg/kg	3.3	2.2	65	49-106	
Dibenz(a,h)anthracene	mg/kg	3.3	1.9	56	44-113	
Fluoranthene	mg/kg	3.3	1.9	57	46-111	
Fluorene	mg/kg	3.3	1.9	58	45-105	
Indeno(1,2,3-cd)pyrene	mg/kg	3.3	1.9	58	45-112	
N-Nitroso-di-n-propylamine	mg/kg	3.3	1.9	56	38-95	
Naphthalene	mg/kg	3.3	1.9	56	41-94	
Phenanthrene	mg/kg	3.3	2.2	66	48-106	
Phenol	mg/kg	3.3	2.3	68	42-102	
Pyrene	mg/kg	3.3	2.7	80	49-110	
2,4,6-Tribromophenol (S)	%.			69	18-110	
2-Fluorobiphenyl (S)	%.			60	22-96	
2-Fluorophenol (S)	%.			71	23-110	
Nitrobenzene-d5 (S)	%.			61	22-97	
p-Terphenyl-d14 (S)	%.			57	17-102	
Phenol-d5 (S)	%.			66	28-108	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157217

MATRIX SPIKE & MATRIX SP					1654059							
	5	0157217002	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
2,4-Dinitrotoluene	 mg/kg	ND	4.3	4.3	2.6	2.3	61	53	12-108	14	20	
2-Chlorophenol	mg/kg	ND	4.3	4.3	2.7	2.6	64	61	27-99	4	20	
2-Methylnaphthalene	mg/kg	ND	4.3	4.3	2.6	2.4	60	54	17-113	8	20	
4-Chloro-3-methylphenol	mg/kg	ND	4.3	4.3	3.1	2.8	72	65	24-111	9	20	
Acenaphthene	mg/kg	ND	4.3	4.3	2.7	2.4	62	56	28-96	9	20	
Acenaphthylene	mg/kg	ND	4.3	4.3	2.7	2.6	63	59	17-109	6	20	
Anthracene	mg/kg	ND	4.3	4.3	2.9	2.6	68	60	23-104	12	20	
Benzo(a)anthracene	mg/kg	ND	4.3	4.3	2.9	2.5	69	58	16-109	15	20	
Benzo(a)pyrene	mg/kg	ND	4.3	4.3	2.7	2.3	63	54	14-112	14	20	
Benzo(b)fluoranthene	mg/kg	ND	4.3	4.3	2.7	2.5	63	57	10-117	8	20	
Benzo(g,h,i)perylene	mg/kg	ND	4.3	4.3	2.4	2.1	57	49	10-110	13	20	
Benzo(k)fluoranthene	mg/kg	ND	4.3	4.3	2.6	2.1	60	48	18-108	21	20	R1
Chrysene	mg/kg	ND	4.3	4.3	2.9	2.4	67	56	23-100	16	20	
Dibenz(a,h)anthracene	mg/kg	ND	4.3	4.3	2.4	2.1	55	48	18-105	13	20	
Fluoranthene	mg/kg	ND	4.3	4.3	2.8	2.4	58	48	16-111	17	20	
Fluorene	mg/kg	ND	4.3	4.3	2.5	2.3	59	53	25-101	9	20	
Indeno(1,2,3-cd)pyrene	mg/kg	ND	4.3	4.3	2.4	2.1	57	49	11-107	13	20	
N-Nitroso-di-n-propylamine	mg/kg	ND	4.3	4.3	2.5	2.3	58	54	28-89	7	20	
Naphthalene	mg/kg	ND	4.3	4.3	2.6	2.4	61	55	26-95	8	20	
Phenanthrene	mg/kg	ND	4.3	4.3	3.1	2.7	64	54	24-105	15	20	
Phenol	mg/kg	ND	4.3	4.3	2.8	2.7	66	62	23-99	5	20	
Pyrene	mg/kg	ND	4.3	4.3	3.5	3.0	75	62	25-107	17	20	
2,4,6-Tribromophenol (S)	%.						66	59	18-110			
2-Fluorobiphenyl (S)	%.						61	56	22-96			
2-Fluorophenol (S)	%.						69	68	23-110			
Nitrobenzene-d5 (S)	%.						61	57	22-97			
p-Terphenyl-d14 (S)	%.						60	51	17-102			
Phenol-d5 (S)	%.						65	61	28-108			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project:	LAE001									
Pace Project No.:	50157217									
QC Batch:	357762		Analysis Meth	od:	SM 2540G					
QC Batch Method:	SM 2540G		Analysis Description:		Dry Weight/P	ercent N	loisture			
Associated Lab Sar	nples: 50157217	001, 50157217002								
SAMPLE DUPLICA	TE: 1654268									
			50157174002	Dup			Max			
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	12.7	12	2.7	0		5		
SAMPLE DUPLICA	TE: 1654387									
			50157138002	Dup			Max			
Parar	neter	Units	Result	Result	RPD		RPD		Qualifiers	
Percent Moisture		%	ND	١	1D			5		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LAE001 Pace Project No.: 50157217

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- 1d The internal standard response was below the laboratory acceptance limits and confirmed by reanalysis. The results reported are from the most QC compliant analysis and may be biased high. JLZ 10/26/16
- L0 Analyte recovery in the laboratory control sample (LCS) was outside QC limits.
- L3 Analyte recovery in the laboratory control sample (LCS) exceeded QC limits. Analyte presence below reporting limits in associated samples. Results unaffected by high bias.
- R1 RPD value was outside control limits.
- S2 Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample re-analysis).

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:LAE001Pace Project No.:50157217

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50157217001	LAE001:BH9:S035055	EPA 3546	357701	EPA 8082	357925
50157217002	LAE001:BH13:S035055	EPA 3546	358147	EPA 8082	358297
50157217001 50157217002	LAE001:BH9:S035055 LAE001:BH13:S035055	EPA 3050 EPA 3050	357677 357677	EPA 6010 EPA 6010	358155 358155
50157217001 50157217002	LAE001:BH9:S035055 LAE001:BH13:S035055	EPA 7471 EPA 7471	357783 357783	EPA 7471 EPA 7471	357936 357936
50157217001 50157217002	LAE001:BH9:S035055 LAE001:BH13:S035055	EPA 3546 EPA 3546	357688 357688	EPA 8270 EPA 8270	357737 357737
50157217001 50157217002	LAE001:BH9:S035055 LAE001:BH13:S035055	EPA 8260 EPA 8260	357824 357824		
50157217003	LAE001:TRIP:W101716	EPA 8260	357823		
50157217001 50157217002	LAE001:BH9:S035055 LAE001:BH13:S035055	SM 2540G SM 2540G	357762 357762		

														÷																. ;		
		No. 0988							r	/ solstat		COMMENTS	(00	700	São										Щ.						DAYS	 1.4%
		N	2)250	ANALYSES	0/0/0/				n l				< >	<					· ·						PACE INDI	1					IME: SHANIDARY	
	X								/		-1 54 50	┥	· >	۶ ب	8			-							Deliver To:	Method of Delivery.	Airbill Number:	Regulatory Program:	Port) NOTES:		TURN AROUND TIME:	
-	CHAIN OF CUSTODY RECORD	Pitts burgh, P.A.	300 Business Center Dr., Suite 320	Pittsburgh, PA 15205	P: (412) 448-0316	PRESERVATIVES	2	-none -Stored in dark			COLLECTION DATE/TIME METALS	10-18-16/16:00	10-17-16/10.00	10-17-16/-					/					DATE: / O / Z O // (TIME: 12 0 -	DATE: 1 6 2 0 1 6	ATE LATE LA C	TIME: (ARZA)	SE (MUST	LAB USE	-RETAINED BY HULL	
	CHA	St. Clairsville, OH		4 St. Clairsville, OH 43850	P: (800) 241-7173		A-Coel only, <4 deg. C B-HNO ₃ pH<2		E-ZnAcetate + NaOH, pH>9 1 F-Na ₂ S ₂ O ₃ (0.008%) 8 G-HCI nH -20		T. SAMPLE TYPE (discrete, composite)	A	-			: 1:	-							4	1 PALE	1000	Streed by M	all the	WHITE	YELLOW		
		Toledo. OH	Suite 300	Toledo, OH 43614	P: (419) 385-2018	SAMPLE MATRIX	AA-AMBIENT AIR C-ASBESTOS	B-SEDIMENT G-GROUNDWATER IA-INDOOR AIR	L-LEACHATE P-PRODUCT S-SOIL	sg-soil gas SS-Subslab Vapor W-Water	NO. OF CONT.	M	g	de la											P C/A		RECEIVED BY	Allerd	DISTRIBUTION:			
		Mason.OH Bectford.OH Mason.OH Defined of Homes Way	Suite 300		P. (513) 459-9677		2	Phase:			OCATION : SAMPLE MATRIX & ID	: 2035055	••		•••		· · ·	•		· · ·	•••	•••	•••	10-20-16	13:05	DATE: 10/2016	0/21/16	orac	0.2	Ø.4 °c		
		Dublin.OH Indianapolis.IN 6397 Emeraid Pkwy 8445 Keyatana Crossing			F: (014) /83-8/// F: (800) 241-7173	Client LEED CO	V	Project # LAE OO	Samplers: MIELECK	Purchase Order #	PROJECT NO.: SAMPLE LOCATION	LAE OOI BH9	1 : BH 13	W : TRIP	•••					•••	•••	•••	• • •	KELNQUISHED BY:	RELINQUISHED BY:	DANIPASE	1110	FEO EX		D AS RECEIVED		100 - 100 -

à.

San	iple Co	ondit	ion L	lpon	Receipt			
Face Analytical Client Name	:_Hu	M	<u> </u>			Project #	5015	7217-
Courier: Fed Ex UPS USPS Clien	t 🗆 Co	ommerc	cial	Pac	e Other _			•
Custody Seal on Cooler/Box Present: yes	no		Seals	intact:	yes [no		/Time 5035A kits ed in freezer
Packing Material: Bubble Wrap	Bags	Nor	ne	Oth	er Ziplo	c		·
hermometer 123456 BCDEF	Туре	of Ice:	Wet	Blue	None	Samples on i	ce, cooling pr	ocess has begun
Cooler Temperature $\cancel{\cancel{0,4}}$	lce \	/isible	in San	nple C	ontainers:	yes Pate and	no	grson examining
Femp should be above freezing to 6°C				Comr	nents:		s: 10/21/	16 NA
Are samples from West Virginia?	Yes	J-No	•	1.	•		/ /	•
Document any containers out of temp.								
Chain of Custody Present:	Yes	□No	□n/a	2.				
Chain of Custody Filled Out:	Yes	⊡No	⊡n/A	3.				
Chain of Custody Relinguished:	Yes	□No		4.				- <u></u>
Sampler Name & Signature on COC:	DYes			5.				
Short Hold Time Analysis (<72hr):	QYes	DNo	□n/a	6.		•	•	
Rush Turn Around Time Requested:	□Yes	No	□n/a	7.				
Containers Intact:	Yes	No	□n/a	8.			·	
Sample Labels match COC:	Fyes	⊡No	□n/a	9.				
-Includes date/time/ID/Analysis						<u></u>		
	□Yes	□No	ZIN/A	10	(Circle) HNO3	H2SO4	NaOH	NaOH/ZnAc
exceptions: VOA, coliform, TOC, O&G All containers needing preservation are found to be in co	noliance v	with EP/	Α.	1.				
ecommendation (<2, >9, >12) unless otherwise noted.				ļ				
Residual Chlorine Check (SVOC 625 Pest/PCB 60	B)			11.	Present	Absent		
Residual Chlorine Check (Total/Amenable/Free Cy	anide)			12.	Present	Absent		
Headspace in VOA Vials (>6mm):	□Yes	ZINo	□n/A	13				·····
Headspace Wisconsin Sulfide	□Yes			14				··
Trip Blank Present:	Aves	□No	□n/a	15				
Trip Blank Custody Seals Present	V Yes			1				
Project Manager Review &								
Samples Arrived within Hold Time:	Dyes			15.			•	
Sufficient Volume:	TYes	- 🗆 No		16.				•
Correct Containers Used:	Tyes			17.				
Client Notification/ Resolution:						Field Data R	equired?	Y / N
Person Contacted:			_Date/	Time:	·		·	* *
Comments/Resolution: JAP per gr	cote_				,,,,,,			
· · · / /-	h	<u></u>						
	<u></u>	<u> </u>						
						·····		- <u></u>
· · · · · · · · · · · · · · · · · · ·				•				

.

.

	SI/MM/Ot ater/Other)	Matrix S Soil/XX (Soil/XY PH <2 PH <9 pH	 	-Ez-						-				DG9P 40mL TSP amber vial	DG9S 40mL H2SO4 amber vial	 DG9U 40mL unpreserved amber vis	SP5T 120mL Coliform Na Thiosulfat		U Summa Can	VG9H 40mL HCL clear vial	VG9T 40mL Na Thio. clear vial	VG9U 40mL unpreserved clear vial	VSG Headspace septa vial & HCL	WGFX 4oz wide jar w/hexane wipe	ZPLC Ziploc Bag
		S AG1H BP3C BP1U SP5T AG2U	· · ·											BP1N 1 liter HNO3 plastic	BP1S 1 liter H2SO4 plastic		BP2A 500mL NaOH, Asc Acid plastic	BP20 500mL NaOH plastic	BP2Z 500mL NaOH, Zn Ac	AF Air Filter	BP3C 250mL NaOH plastic	BP3Z 250mL NaOH, Zn Ac plastic	C Air Cassettes	DG9B 40mL Na Bisulfate amber vial	DG9M 40mL MeOH clear vial
	Project # 5015 7217	6 BP2N BP2U BP2S BP3N BP3U BP3S AG3S						-						AGOU 100mL unpreserved amber glass	AG1H 1 liter HCL amber glass			AG2S 500mL H2SO4 amber glass	AG2U 500mL unpreserved amber glass	AG3U 250mL unpreserved amber glass	BG1H 1 liter HCL clear glass	BG1S 1 liter H2SO4 clear glass	BG1T 1 liter Na Thiosulfate clear glass	BG1U 1 liter unpreserved glass	BP1A 1 liter NaOH, Asc Acid plastic
11 11	CLIENT: ///w// coc PAGE of / coc ID#	Sample Line (영영) them (영영) AG1U WGFU AG0U R 4 / 6 BP2N BP2U BP2S		5	4	- CO	Ű	2	 0	10	+	12	Container Codes	DG9HI 40mL HCL amber voa viał		[f	BP2N 500mL HNO3 plastic	1	BP2S 500mL H2SO4 plastic	BP3N 250mL HNO3 plastic	BP3U 250mL unpreserved plastic	BP3S 250mL H2SO4 plastic	AG3S 250mL H2SO4 glass amber	AG1S 1 liter H2SO4 amber glass	BP1U 1 liter unpreserved plastic

5

Sample Container Count

E 1NI O 270 POU OR 11 May 2015

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

November 01, 2016

Ms. Lindsay Crow Hull & Associates, Inc. 4 Hemisphere Way Bedford, OH 44146

RE: Project: LAE001 Pace Project No.: 50157354

Dear Ms. Crow:

Enclosed are the analytical results for sample(s) received by the laboratory on October 25, 2016. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Tina Say

Tina Sayer tina.sayer@pacelabs.com Project Manager

Enclosures

cc: Hull Data/EDD Admin Ms. Karyn Selle

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

CERTIFICATIONS

Project: LAE001 Pace Project No.: 50157354

Indiana Certification IDs

7726 Moller Road, Indianapolis, IN 46268 Illinois Certification #: 200074 Indiana Certification #: C-49-06 Kansas/NELAP Certification #:E-10177 Kentucky UST Certification #: 0042 Kentucky WW Certification #:98019 Ohio VAP Certification #: CL-0065 Oklahoma Certification #: 2014-148 Texas Certification #: T104704355-15-9 West Virginia Certification #: 330 Wisconsin Certification #: 999788130 USDA Soil Permit #: P330-10-00128

SAMPLE SUMMARY

Project: LAE001 Pace Project No.: 50157354

Lab ID	Sample ID	Matrix	Date Collected	Date Received
50157354001	LAE001:BH-5:S0851005	Solid	10/19/16 14:40	10/25/16 08:35
50157354002	LAE001:BH-7:S035055	Solid	10/19/16 12:43	10/25/16 08:35
50157354003	LAE001:Trip:W101916	Solid	10/19/16 08:00	10/25/16 08:35

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SAMPLE ANALYTE COUNT

Project:LAE001Pace Project No.:50157354

Lab ID	Sample ID	Method	Analysts	Analytes Reported
50157354001	 LAE001:BH-5:S0851005	EPA 8082	СРН	8
		EPA 6010	JPK	7
		EPA 7471	ILP	1
		EPA 8270	TBP	51
		EPA 8260	GRM	50
		SM 2540G	SCM	1
50157354002	LAE001:BH-7:S035055	EPA 8082	CPH	8
		EPA 6010	JPK	7
		EPA 7471	ILP	1
		EPA 8270	TBP	51
		EPA 8260	GRM	50
		SM 2540G	SCM	1
50157354003	LAE001:Trip:W101916	EPA 8260	GRM	50

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

SUMMARY OF DETECTION

Project: LAE001 F

Pace Project No.:	50157354
-------------------	----------

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
50157354001	LAE001:BH-5:S0851005					
EPA 6010	Arsenic	75.3	mg/kg	1.2	10/28/16 22:40	
EPA 6010	Barium	132	mg/kg	1.2	10/28/16 22:40	
EPA 6010	Cadmium	2.7	mg/kg	0.59	10/28/16 22:40	
EPA 6010	Chromium	20.8	mg/kg	1.2	10/28/16 22:40	
EPA 6010	Lead	6.4	mg/kg	1.2	10/28/16 22:40	
EPA 6010	Selenium	3.4	mg/kg	1.2	10/28/16 22:40	
EPA 8260	Benzene	0.0077	mg/kg	0.0067	10/27/16 03:50	
EPA 8260	Toluene	0.013	mg/kg	0.0067	10/27/16 03:50	
SM 2540G	Percent Moisture	25.7	%	0.10	10/26/16 10:35	
50157354002	LAE001:BH-7:S035055					
EPA 6010	Arsenic	113	mg/kg	1.4	10/28/16 22:43	
EPA 6010	Barium	195	mg/kg	1.4	10/28/16 22:43	
EPA 6010	Chromium	27.0	mg/kg	1.4	10/28/16 22:43	
EPA 6010	Lead	8.4	mg/kg	1.4	10/28/16 22:43	
EPA 6010	Selenium	3.9	mg/kg	1.4	10/28/16 22:43	
EPA 8260	Methylene Chloride	0.091	mg/kg	0.029	10/27/16 04:23	C9
SM 2540G	Percent Moisture	31.1	%	0.10	10/26/16 10:35	
50157354003	LAE001:Trip:W101916					
EPA 8260	Toluene	0.0077	mg/kg	0.0050	10/26/16 07:02	C0

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Method:EPA 8082Description:8082 GCS PCB SolidsClient:Hull & Associates, Inc. (Bedford)Date:November 01, 2016

General Information:

2 samples were analyzed for EPA 8082. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Method: EPA 6010

Description:6010 MET ICPClient:Hull & Associates, Inc. (Bedford)Date:November 01, 2016

General Information:

2 samples were analyzed for EPA 6010. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3050 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Method: EPA 7471

Description:7471 MercuryClient:Hull & Associates, Inc. (Bedford)Date:November 01, 2016

General Information:

2 samples were analyzed for EPA 7471. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 7471 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Method: EPA 8270

Description:8270 MSSV SHORT LIST MICROWAVEClient:Hull & Associates, Inc. (Bedford)Date:November 01, 2016

General Information:

2 samples were analyzed for EPA 8270. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Sample Preparation:

The samples were prepared in accordance with EPA 3546 with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

QC Batch: 358149

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50157354001

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
 - MS (Lab ID: 1655738)
 - Acenaphthene
 - Anthracene
 - Benzo(a)anthracene
 - Benzo(a)pyrene
 - Benzo(b)fluoranthene
 - Benzo(g,h,i)perylene
 - Benzo(k)fluoranthene
 - Chrysene
 - Dibenz(a,h)anthracene

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Method:	EPA 8270
Description:	8270 MSSV SHORT LIST MICROWAVE
Client:	Hull & Associates, Inc. (Bedford)
Date:	November 01, 2016

QC Batch: 358149

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50157354001

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- Fluoranthene
- Fluorene
- Indeno(1,2,3-cd)pyrene
- Phenanthrene
- Pyrene
- MSD (Lab ID: 1655739)
 - Acenaphthene
 - Anthracene
 - Benzo(a)anthracene
 - Benzo(a)pyrene
 - Benzo(g,h,i)perylene
 - Benzo(k)fluoranthene
 - Chrysene
 - Dibenz(a,h)anthracene
 - Fluoranthene
 - Fluorene
 - Indeno(1,2,3-cd)pyrene
 - Phenanthrene
 - Pyrene

R1: RPD value was outside control limits.

- MSD (Lab ID: 1655739)
 - 2,4-Dinitrotoluene
 - 2-Methylnaphthalene
 - Acenaphthene
 - Acenaphthylene
 - Benzo(a)anthracene
 - Naphthalene

Additional Comments:

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Tace 1 10ject 110... 3013730

Method:EPA 8260Description:8260 MSV 5030 Low LevelClient:Hull & Associates, Inc. (Bedford)Date:November 01, 2016

General Information:

2 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

QC Batch: 358363

S1: Surrogate recovery outside laboratory control limits (confirmed by re-analysis).

- LAE001:BH-5:S0851005 (Lab ID: 50157354001)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)
- LAE001:BH-7:S035055 (Lab ID: 50157354002)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)
- MS (Lab ID: 1656593)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)
- MSD (Lab ID: 1656594)
 - Dibromofluoromethane (S)
 - Toluene-d8 (S)

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Method:	EPA 8260
Description:	8260 MSV 5030 Low Level
Client:	Hull & Associates, Inc. (Bedford)
Date:	November 01, 2016

QC Batch: 358363

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 50157354002

M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

- MS (Lab ID: 1656593)
 - 1,1,1-Trichloroethane
 - 1,1-Dichloroethene
 - 1,2-Dichloropropane
 - Benzene
 - Chloroform
 - Ethylbenzene
 - Methyl-tert-butyl ether
 - Tetrachloroethene
 - Toluene
 - Trichloroethene
 - Vinyl chloride
 - cis-1,2-Dichloroethene
 - trans-1,2-Dichloroethene
- MSD (Lab ID: 1656594)
 - 1,1,1-Trichloroethane
 - 1,1-Dichloroethene
 - 1,2-Dichloropropane
 - Chloroform
 - Methyl-tert-butyl ether
 - Tetrachloroethene
 - Vinyl chloride
 - cis-1,2-Dichloroethene
 - trans-1,2-Dichloroethene
- R1: RPD value was outside control limits.
 - MSD (Lab ID: 1656594)
 - 1,1,1-Trichloroethane
 - 1,1,2,2-Tetrachloroethane
 - 1,1-Dichloroethene
 - 1,2,4-Trimethylbenzene
 - Benzene
 - Chlorobenzene
 - Ethylbenzene
 - Isopropylbenzene (Cumene)
 - Methyl-tert-butyl ether
 - Tetrachloroethene
 - Toluene
 - Trichloroethene

Additional Comments:

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Method:EPA 8260Description:8260 MSV 5030 Low LevelClient:Hull & Associates, Inc. (Bedford)Date:November 01, 2016

Analyte Comments:

QC Batch: 358363

C9: Common Laboratory Contaminant.

• LAE001:BH-7:S035055 (Lab ID: 50157354002)

Methylene Chloride

PROJECT NARRATIVE

Project: LAE001 Pace Project No.: 50157354

Method:EPA 8260Description:8260 MSV 5035A VOAClient:Hull & Associates, Inc. (Bedford)Date:November 01, 2016

General Information:

1 sample was analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

Additional Comments:

Analyte Comments:

QC Batch: 358124

- C0: Result confirmed by second analysis.
 - LAE001:Trip:W101916 (Lab ID: 50157354003)
 - Toluene

This data package has been reviewed for quality and completeness and is approved for release.

Qual

ANALYTICAL RESULTS

Project:

LAE001 Pace Project No .: 50157354 Collected: 10/19/16 14:40 Sample: LAE001:BH-5:S0851005 Lab ID: 50157354001 Received: 10/25/16 08:35 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. 8082 GCS PCB Solids Analytical Method: EPA 8082 Preparation Method: EPA 3546 ND PCB-1016 (Aroclor 1016) mg/kg 0.13 1 10/26/16 11:20 10/26/16 21:56 12674-11-2 PCB-1221 (Aroclor 1221) ND mg/kg 0.13 10/26/16 11:20 10/26/16 21:56 11104-28-2 1 PCB-1232 (Aroclor 1232) ND mg/kg 0.13 10/26/16 11:20 10/26/16 21:56 11141-16-5 1 PCB-1242 (Aroclor 1242) ND mg/kg 0.13 1 10/26/16 11:20 10/26/16 21:56 53469-21-9 PCB-1248 (Aroclor 1248) 0.13 ND mg/kg 1 10/26/16 11:20 10/26/16 21:56 12672-29-6 PCB-1254 (Aroclor 1254) ND mg/kg 0.13 10/26/16 11:20 10/26/16 21:56 11097-69-1 1 PCB-1260 (Aroclor 1260) ND 0.13 10/26/16 11:20 10/26/16 21:56 11096-82-5 mg/kg 1 Surrogates Tetrachloro-m-xylene (S) 28 %. 24-99 1 10/26/16 11:20 10/26/16 21:56 877-09-8 **6010 MET ICP** Analytical Method: EPA 6010 Preparation Method: EPA 3050 Arsenic 75.3 mg/kg 1.2 10/28/16 08:06 10/28/16 22:40 7440-38-2 1 Barium 132 mg/kg 1.2 1 10/28/16 08:06 10/28/16 22:40 7440-39-3 Cadmium 2.7 mg/kg 0.59 10/28/16 08:06 10/28/16 22:40 7440-43-9 1 10/28/16 08:06 10/28/16 22:40 7440-47-3 Chromium 20.8 mg/kg 1.2 1 Lead 6.4 mg/kg 1.2 1 10/28/16 08:06 10/28/16 22:40 7439-92-1 Selenium 3.4 mg/kg 12 1 10/28/16 08:06 10/28/16 22:40 7782-49-2 10/28/16 08:06 10/28/16 22:40 7440-22-4 Silver ND 0.59 1 mg/kg 7471 Mercury Analytical Method: EPA 7471 Preparation Method: EPA 7471 ND 0.28 10/25/16 21:37 10/26/16 09:54 7439-97-6 Mercury mg/kg 1 8270 MSSV SHORT LIST MICROWAVE Analytical Method: EPA 8270 Preparation Method: EPA 3546 ND 0.44 10/26/16 11:40 10/27/16 16:12 83-32-9 Acenaphthene mg/kg 1 ND 0.44 10/26/16 11:40 10/27/16 16:12 208-96-8 Acenaphthylene mg/kg 1 ND 0.44 Anthracene mg/kg 10/26/16 11:40 10/27/16 16:12 120-12-7 1 ND Benzo(a)anthracene mg/kg 0.44 10/26/16 11:40 10/27/16 16:12 56-55-3 1 ND Benzo(a)pyrene mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 50-32-8 Benzo(b)fluoranthene ND mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 205-99-2 Benzo(g,h,i)perylene ND mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 191-24-2 Benzo(k)fluoranthene ND mg/kg 0.44 10/26/16 11:40 10/27/16 16:12 207-08-9 1 Butylbenzylphthalate ND 0.44 10/26/16 11:40 10/27/16 16:12 mg/kg 1 85-68-7 4-Chloro-3-methylphenol ND mg/kg 0.89 10/26/16 11:40 10/27/16 16:12 59-50-7 1 4-Chloroaniline ND 0.89 10/26/16 11:40 10/27/16 16:12 106-47-8 mg/kg 1 bis(2-Chloroethoxy)methane ND 0.44 10/26/16 11:40 10/27/16 16:12 111-91-1 mg/kg 1 bis(2-Chloroethyl) ether ND mg/kg 0.44 10/26/16 11:40 10/27/16 16:12 111-44-4 1 bis(2chloro1methylethyl) ether ND mg/kg 0 44 1 10/26/16 11:40 10/27/16 16:12 108-60-1 2-Chloronaphthalene ND mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 91-58-7 2-Chlorophenol ND mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 95-57-8 Chrysene

ND mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 218-01-9 M1 Dibenz(a,h)anthracene ND mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 53-70-3 M1 2,4-Dichlorophenol ND mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 120-83-2 ND 0.44 10/26/16 11:40 10/27/16 16:12 84-66-2 Diethylphthalate mg/kg 1 2.4-Dimethylphenol ND mg/kg 0.44 1 10/26/16 11:40 10/27/16 16:12 105-67-9 Di-n-butylphthalate ND 0.44 10/26/16 11:40 10/27/16 16:12 84-74-2 mg/kg 1

REPORT OF LABORATORY ANALYSIS

M1.R1

M1,R1

R1

M1

M1

M1

M1

M1

ANALYTICAL RESULTS

Project: LAE001 Pace Project No.: 50157354

Sample: LAE001:BH-5:S0851005	Lab ID: 501		Collected: 10/19/1				latrix: Solid	
Results reported on a "dry weight" Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8270 MSSV SHORT LIST MICROW	AVE Analytical Met	hod: EPA 82	70 Preparation Meth	nod: EF	PA 3546		_	
2,4-Dinitrophenol	ND	mg/kg	2.1	1	10/26/16 11:40	10/27/16 16:12	51-28-5	
2,4-Dinitrotoluene	ND	mg/kg	0.44	1	10/26/16 11:40	10/27/16 16:12	121-14-2	R1
2,6-Dinitrotoluene	ND	mg/kg	0.44	1	10/26/16 11:40	10/27/16 16:12	606-20-2	
Di-n-octylphthalate	ND	mg/kg	0.44	1	10/26/16 11:40	10/27/16 16:12	117-84-0	
bis(2-Ethylhexyl)phthalate	ND	mg/kg	0.44	1	10/26/16 11:40	10/27/16 16:12	117-81-7	
Fluoranthene	ND	mg/kg	0.44	1	10/26/16 11:40	10/27/16 16:12	206-44-0	M1
Fluorene	ND	mg/kg	0.44	1	10/26/16 11:40	10/27/16 16:12	86-73-7	M1
Hexachlorocyclopentadiene	ND	mg/kg	0.44	1	10/26/16 11:40	10/27/16 16:12	77-47-4	
Hexachloroethane	ND	mg/kg	0.44	1		10/27/16 16:12		
Indeno(1,2,3-cd)pyrene	ND	mg/kg	0.44	1		10/27/16 16:12		M1
Isophorone	ND	mg/kg	0.44	1		10/27/16 16:12		
2-Methylnaphthalene	ND	mg/kg	0.44	1		10/27/16 16:12		R1
2-Methylphenol(o-Cresol)	ND	mg/kg	0.44	1		10/27/16 16:12		
3&4-Methylphenol(m&p Cresol)	ND	mg/kg	0.89	1		10/27/16 16:12		
Naphthalene	ND	mg/kg	0.44	1		10/27/16 16:12	91-20-3	R1
Nitrobenzene	ND	mg/kg	0.44	1		10/27/16 16:12		
N-Nitroso-di-n-propylamine	ND	mg/kg	0.44	1		10/27/16 16:12		
N-Nitrosodiphenylamine	ND	mg/kg	0.44	1		10/27/16 16:12		
Phenanthrene	ND	mg/kg	0.44	1		10/27/16 16:12		M1
Phenol	ND	mg/kg	0.44	1		10/27/16 16:12		
Pyrene	ND	mg/kg	0.44	1		10/27/16 16:12		M1
2,4,5-Trichlorophenol	ND	mg/kg	0.44	1		10/27/16 16:12		
2,4,6-Trichlorophenol	ND	mg/kg	0.44	1		10/27/16 16:12		
Surrogates		iiig/itg	0.11	'	10/20/10 11.40	10/21/10 10:12	00 00 2	
Nitrobenzene-d5 (S)	32	%.	22-97	1	10/26/16 11:40	10/27/16 16:12	4165-60-0	
Phenol-d5 (S)	34	%.	28-108	1		10/27/16 16:12		
2-Fluorophenol (S)	33	%.	23-110	1		10/27/16 16:12		
2,4,6-Tribromophenol (S)	14	%.	18-110	1		10/27/16 16:12		S8
2-Fluorobiphenyl (S)	16	%.	22-96	1		10/27/16 16:12		S8
p-Terphenyl-d14 (S)	9	%.	17-102	1		10/27/16 16:12		S8
8260 MSV 5030 Low Level	Analytical Met		-					
	·			4		10/07/10 02.50	620.20.6	
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,1,1-Trichloroethane	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,1,2-Trichloroethane	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,1-Dichloroethane	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,1-Dichloroethene	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,2,4-Trichlorobenzene	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,2,4-Trimethylbenzene	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,2-Dichlorobenzene	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,2-Dichloroethane	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,2-Dichloropropane	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,3-Dichloropropane	ND	mg/kg	0.0067	1		10/27/16 03:50		
1,4-Dichlorobenzene	ND	mg/kg	0.0067	1		10/27/16 03:50		
2-Butanone (MEK)	ND	mg/kg	0.034	1		10/27/16 03:50	78-93-3	

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

Qual

ANALYTICAL RESULTS

Project: LAE001 Pace Project No.: 50157354

 Sample:
 LAE001:BH-5:S0851005
 Lab ID:
 50157354001
 Collected:
 10/19/16
 14:40
 Received:
 10/25/16
 08:35
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Parameters
 Results
 Units
 Report Limit
 DF
 Prepared
 Analyzed
 CAS No.

8260 MSV 5030 Low Level	Analytical Meth	nod: EPA 8260			
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.034	1	10/27/16 03:50 108-10-1
Acetone	ND	mg/kg	0.13	1	10/27/16 03:50 67-64-1
Benzene	0.0077	mg/kg	0.0067	1	10/27/16 03:50 71-43-2
Bromodichloromethane	ND	mg/kg	0.0067	1	10/27/16 03:50 75-27-4
Bromoform	ND	mg/kg	0.0067	1	10/27/16 03:50 75-25-2
Bromomethane	ND	mg/kg	0.0067	1	10/27/16 03:50 74-83-9
Carbon disulfide	ND	mg/kg	0.013	1	10/27/16 03:50 75-15-0
Carbon tetrachloride	ND	mg/kg	0.0067	1	10/27/16 03:50 56-23-5
Chlorobenzene	ND	mg/kg	0.0067	1	10/27/16 03:50 108-90-7
Chloroethane	ND	mg/kg	0.0067	1	10/27/16 03:50 75-00-3
Chloroform	ND	mg/kg	0.0067	1	10/27/16 03:50 67-66-3
Chloromethane	ND	mg/kg	0.0067	1	10/27/16 03:50 74-87-3
Dibromochloromethane	ND	mg/kg	0.0067	1	10/27/16 03:50 124-48-1
Dibromomethane	ND	mg/kg	0.0067	1	10/27/16 03:50 74-95-3
Dichlorodifluoromethane	ND	mg/kg	0.0067	1	10/27/16 03:50 75-71-8
Ethyl methacrylate	ND	mg/kg	0.13	1	10/27/16 03:50 97-63-2
Ethylbenzene	ND	mg/kg	0.0067	1	10/27/16 03:50 100-41-4
Isopropylbenzene (Cumene)	ND	mg/kg	0.0067	1	10/27/16 03:50 98-82-8
Methyl-tert-butyl ether	ND	mg/kg	0.0067	1	10/27/16 03:50 1634-04-4
Methylene Chloride	ND	mg/kg	0.027	1	10/27/16 03:50 75-09-2
Styrene	ND	mg/kg	0.0067	1	10/27/16 03:50 100-42-5
Tetrachloroethene	ND	mg/kg	0.0067	1	10/27/16 03:50 127-18-4
Toluene	0.013	mg/kg	0.0067	1	10/27/16 03:50 108-88-3
Trichloroethene	ND	mg/kg	0.0067	1	10/27/16 03:50 79-01-6
Trichlorofluoromethane	ND	mg/kg	0.0067	1	10/27/16 03:50 75-69-4
Vinyl acetate	ND	mg/kg	0.13	1	10/27/16 03:50 108-05-4
Vinyl chloride	ND	mg/kg	0.0067	1	10/27/16 03:50 75-01-4
Xylene (Total)	ND	mg/kg	0.013	1	10/27/16 03:50 1330-20-7
cis-1,2-Dichloroethene	ND	mg/kg	0.0067	1	10/27/16 03:50 156-59-2
cis-1,3-Dichloropropene	ND	mg/kg	0.0067	1	10/27/16 03:50 10061-01-5
n-Hexane	ND	mg/kg	0.0067	1	10/27/16 03:50 110-54-3
trans-1,2-Dichloroethene	ND	mg/kg	0.0067	1	10/27/16 03:50 156-60-5
trans-1,3-Dichloropropene	ND	mg/kg	0.0067	1	10/27/16 03:50 10061-02-6
Surrogates					
Dibromofluoromethane (S)	202	%.	70-128	1	10/27/16 03:50 1868-53-7 S1
Toluene-d8 (S)	145	%.	72-139	1	10/27/16 03:50 2037-26-5 S1
4-Bromofluorobenzene (S)	75	%.	65-127	1	10/27/16 03:50 460-00-4
Percent Moisture	Analytical Meth	nod: SM 2540G			
Percent Moisture	25.7	%	0.10	1	10/26/16 10:35

ANALYTICAL RESULTS

Project: LAE001

Pace Project No.: 50157354

Sample: LAE001:BH-7:S035055	Lab ID: 501	57354002	Collected: 10/19/1	6 12:43	B Received: 10	/25/16 08:35 N	latrix: Solid	
Results reported on a "dry weight"	basis and are adj	iusted for p	ercent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8082 GCS PCB Solids	Analytical Met	hod: EPA 80	82 Preparation Metl	nod: EP	A 3546			
PCB-1016 (Aroclor 1016)	ND	mg/kg	0.14	1	10/26/16 11:20	10/26/16 22:16	12674-11-2	
PCB-1221 (Aroclor 1221)	ND	mg/kg	0.14	1	10/26/16 11:20	10/26/16 22:16	11104-28-2	
PCB-1232 (Aroclor 1232)	ND	mg/kg	0.14	1	10/26/16 11:20	10/26/16 22:16	11141-16-5	
PCB-1242 (Aroclor 1242)	ND	mg/kg	0.14	1	10/26/16 11:20	10/26/16 22:16	53469-21-9	
PCB-1248 (Aroclor 1248)	ND	mg/kg	0.14	1	10/26/16 11:20	10/26/16 22:16	12672-29-6	
PCB-1254 (Aroclor 1254)	ND	mg/kg	0.14	1	10/26/16 11:20	10/26/16 22:16	11097-69-1	
PCB-1260 (Aroclor 1260)	ND	mg/kg	0.14	1	10/26/16 11:20	10/26/16 22:16	11096-82-5	
Surrogates		5 5	-					
Tetrachloro-m-xylene (S)	35	%.	24-99	1	10/26/16 11:20	10/26/16 22:16	877-09-8	
6010 MET ICP	Analytical Met	hod: EPA 60	010 Preparation Meth	nod: EP	A 3050			
Arsenic	113	mg/kg	1.4	1	10/28/16 08:06	10/28/16 22:43	7440-38-2	
Barium	195	mg/kg	1.4	1	10/28/16 08:06	10/28/16 22:43	7440-39-3	
Cadmium	ND	mg/kg	0.70	1		10/28/16 22:43		
Chromium	27.0	mg/kg	1.4	1		10/28/16 22:43		
Lead	8.4	mg/kg	1.4	1		10/28/16 22:43		
Selenium	3.9	mg/kg	1.4	1		10/28/16 22:43		
Silver	ND	mg/kg	0.70	1		10/28/16 22:43		
7471 Mercury	Analytical Met		71 Preparation Met	nod: EP				
Mercury	ND	mg/kg	. 0.28	1		10/26/16 09:56	7439-97-6	
8270 MSSV SHORT LIST MICROWA	VE Analytical Met	hod: EPA 82	270 Preparation Met	nod: EP	A 3546			
Acenaphthene	ND	mg/kg	0.47	1	10/26/16 11.40	10/27/16 17:08	83-32-9	
Acenaphthylene	ND	mg/kg	0.47	1		10/27/16 17:08		
Anthracene	ND	mg/kg	0.47	1		10/27/16 17:08		
Benzo(a)anthracene	ND	mg/kg	0.47	1		10/27/16 17:08		
Benzo(a)pyrene	ND	mg/kg	0.47	1		10/27/16 17:08		
Benzo(b)fluoranthene	ND	mg/kg	0.47	1		10/27/16 17:08		
Benzo(g,h,i)perylene	ND	mg/kg	0.47	1		10/27/16 17:08		
Benzo(k)fluoranthene	ND	mg/kg	0.47	1		10/27/16 17:08	-	
Butylbenzylphthalate	ND	mg/kg	0.47	1		10/27/16 17:08		
4-Chloro-3-methylphenol	ND	mg/kg	0.95	1		10/27/16 17:08		
4-Chloroaniline	ND	mg/kg	0.95	1		10/27/16 17:08		
bis(2-Chloroethoxy)methane	ND	mg/kg	0.95	1		10/27/16 17:08		
bis(2-Chloroethyl) ether	ND	mg/kg	0.47	1		10/27/16 17:08		
bis(2chloro1methylethyl) ether	ND	mg/kg	0.47	1		10/27/16 17:08		
	ND		0.47			10/27/16 17:08		
2-Chloronaphthalene 2-Chlorophenol	ND	mg/kg	0.47	1		10/27/16 17:08		
•		mg/kg		1				
Chrysene	ND	mg/kg	0.47	1		10/27/16 17:08		
Dibenz(a,h)anthracene	ND	mg/kg	0.47	1		10/27/16 17:08		
2,4-Dichlorophenol	ND	mg/kg	0.47	1		10/27/16 17:08		
Diethylphthalate	ND	mg/kg	0.47	1		10/27/16 17:08		
2,4-Dimethylphenol	ND	mg/kg	0.47	1		10/27/16 17:08		
Di-n-butylphthalate	ND	mg/kg	0.47	1	10/26/16 11:40	10/27/16 17:08	84-74-2	

ANALYTICAL RESULTS

Project: LAE001 Pace Project No.: 50157354

Sample: LAE001:BH-7:S035055 Lab ID: 50157354002 Collected: 10/19/16 12:43 Received: 10/25/16 08:35 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8270 MSSV SHORT LIST MICROWAVE Analytical Method: EPA 8270 Preparation Method: EPA 3546 ND 2,4-Dinitrophenol mg/kg 2.3 1 10/26/16 11:40 10/27/16 17:08 51-28-5 2,4-Dinitrotoluene ND mg/kg 0.47 10/26/16 11:40 10/27/16 17:08 121-14-2 1 2,6-Dinitrotoluene ND mg/kg 0.47 10/26/16 11:40 10/27/16 17:08 606-20-2 1 Di-n-octylphthalate ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 117-84-0 bis(2-Ethylhexyl)phthalate ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 117-81-7 mg/kg Fluoranthene ND 0.47 10/26/16 11:40 10/27/16 17:08 206-44-0 1 Fluorene ND 0.47 10/26/16 11:40 10/27/16 17:08 86-73-7 mg/kg 1 Hexachlorocyclopentadiene ND 0 47 10/26/16 11:40 10/27/16 17:08 77-47-4 mg/kg 1 ND 0.47 10/26/16 11:40 10/27/16 17:08 67-72-1 Hexachloroethane mg/kg 1 ND 10/26/16 11:40 10/27/16 17:08 193-39-5 Indeno(1,2,3-cd)pyrene 0.47 mg/kg 1 ND 10/26/16 11:40 10/27/16 17:08 78-59-1 Isophorone mg/kg 0.47 1 2-Methylnaphthalene ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 91-57-6 2-Methylphenol(o-Cresol) ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 95-48-7 3&4-Methylphenol(m&p Cresol) ND 0.95 10/26/16 11:40 10/27/16 17:08 mg/kg 1 Naphthalene ND 0.47 10/26/16 11:40 10/27/16 17:08 91-20-3 mg/kg 1 Nitrobenzene ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 98-95-3 N-Nitroso-di-n-propylamine ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 621-64-7 N-Nitrosodiphenylamine ND mg/kg 0.47 10/26/16 11:40 10/27/16 17:08 86-30-6 1 ND Phenanthrene mg/kg 0 47 1 10/26/16 11:40 10/27/16 17:08 85-01-8 Phenol ND mg/kg 0.47 10/26/16 11:40 10/27/16 17:08 108-95-2 1 Pyrene ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 129-00-0 2,4,5-Trichlorophenol ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 95-95-4 2,4,6-Trichlorophenol ND mg/kg 0.47 1 10/26/16 11:40 10/27/16 17:08 88-06-2 Surrogates Nitrobenzene-d5 (S) 51 %. 22-97 1 10/26/16 11:40 10/27/16 17:08 4165-60-0 Phenol-d5 (S) 41 %. 28-108 1 10/26/16 11:40 10/27/16 17:08 4165-62-2 42 2-Fluorophenol (S) %. 23-110 1 10/26/16 11:40 10/27/16 17:08 367-12-4 35 2,4,6-Tribromophenol (S) %. 18-110 1 10/26/16 11:40 10/27/16 17:08 118-79-6 22-96 2-Fluorobiphenyl (S) 42 %. 1 10/26/16 11:40 10/27/16 17:08 321-60-8 p-Terphenyl-d14 (S) 47 %. 17-102 1 10/26/16 11:40 10/27/16 17:08 1718-51-0 8260 MSV 5030 Low Level Analytical Method: EPA 8260 ND 1,1,1,2-Tetrachloroethane mg/kg 0.0073 1 10/27/16 04:23 630-20-6 1,1,1-Trichloroethane ND mg/kg 0.0073 1 10/27/16 04:23 71-55-6 M1,R1 ND mg/kg 0.0073 10/27/16 04:23 79-34-5 1,1,2,2-Tetrachloroethane 1 R1 ND 1,1,2-Trichloroethane mg/kg 0.0073 1 10/27/16 04:23 79-00-5 1,1-Dichloroethane ND mg/kg 0.0073 10/27/16 04:23 75-34-3 1 1,1-Dichloroethene ND mg/kg 0.0073 1 10/27/16 04:23 75-35-4 M1.R1 ND 0.0073 10/27/16 04:23 120-82-1 1,2,4-Trichlorobenzene mg/kg 1 ND 10/27/16 04:23 95-63-6 R1 1,2,4-Trimethylbenzene mg/kg 0.0073 1 ND 10/27/16 04:23 95-50-1 1,2-Dichlorobenzene mg/kg 0.0073 1 ND 10/27/16 04:23 107-06-2 1,2-Dichloroethane mg/kg 0.0073 1 ND 1,2-Dichloropropane mg/kg 0.0073 1 10/27/16 04:23 78-87-5 M1 ND 1,3-Dichloropropane mg/kg 0.0073 1 10/27/16 04:23 142-28-9 1,4-Dichlorobenzene ND mg/kg 0.0073 10/27/16 04:23 106-46-7 1 2-Butanone (MEK) ND mg/kg 0.036 1 10/27/16 04:23 78-93-3

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: LAE001 Pace Project No.: 50157354

Collected: 10/19/16 12:43 Sample: LAE001:BH-7:S035055 Lab ID: 50157354002 Received: 10/25/16 08:35 Matrix: Solid Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions. Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 8260 MSV 5030 Low Level Analytical Method: EPA 8260 4-Methyl-2-pentanone (MIBK) ND mg/kg 0.036 1 10/27/16 04:23 108-10-1 Acetone ND mg/kg 0.15 1 10/27/16 04:23 67-64-1 ND mg/kg 0.0073 10/27/16 04:23 71-43-2 M1,R1 Benzene 1 Bromodichloromethane ND mg/kg 0.0073 10/27/16 04:23 75-27-4 1 Bromoform ND mg/kg 0.0073 1 10/27/16 04:23 75-25-2 mg/kg Bromomethane ND 0.0073 10/27/16 04:23 74-83-9 1 Carbon disulfide ND 0.015 10/27/16 04:23 75-15-0 mg/kg 1 Carbon tetrachloride ND 0.0073 10/27/16 04:23 56-23-5 mg/kg 1 ND 10/27/16 04:23 108-90-7 Chlorobenzene 0.0073 R1 mg/kg 1 ND Chloroethane 0.0073 10/27/16 04:23 75-00-3 mg/kg 1 ND Chloroform mg/kg 0.0073 1 10/27/16 04:23 67-66-3 M1 Chloromethane ND mg/kg 0.0073 1 10/27/16 04:23 74-87-3 Dibromochloromethane ND mg/kg 0.0073 1 10/27/16 04:23 124-48-1 Dibromomethane ND 0.0073 10/27/16 04:23 74-95-3 mg/kg 1 Dichlorodifluoromethane ND 0.0073 10/27/16 04:23 75-71-8 mg/kg 1 Ethyl methacrylate ND mg/kg 0.15 1 10/27/16 04:23 97-63-2 Ethylbenzene ND mg/kg 0.0073 1 10/27/16 04:23 100-41-4 M1.R1 Isopropylbenzene (Cumene) ND mg/kg 0.0073 10/27/16 04:23 98-82-8 **R1** 1 ND Methyl-tert-butyl ether mg/kg 0.0073 10/27/16 04:23 1634-04-4 M1.R1 1 Methylene Chloride 0.091 mg/kg 10/27/16 04:23 75-09-2 C9 0.029 1 Styrene ND mg/kg 0.0073 1 10/27/16 04:23 100-42-5 Tetrachloroethene ND mg/kg 0.0073 1 10/27/16 04:23 127-18-4 M1,R1 Toluene ND mg/kg 0.0073 1 10/27/16 04:23 108-88-3 M1,R1 Trichloroethene ND mg/kg 0.0073 10/27/16 04:23 79-01-6 M1.R1 1 Trichlorofluoromethane ND mg/kg 0.0073 10/27/16 04:23 75-69-4 1 ND Vinyl acetate mg/kg 0.15 1 10/27/16 04:23 108-05-4 Vinyl chloride ND mg/kg 0.0073 1 10/27/16 04:23 75-01-4 M1 Xylene (Total) ND 0.015 10/27/16 04:23 1330-20-7 RS mg/kg 1 cis-1,2-Dichloroethene ND mg/kg 0.0073 10/27/16 04:23 156-59-2 M1 1 ND 0.0073 10/27/16 04:23 10061-01-5 cis-1,3-Dichloropropene mg/kg 1 ND 10/27/16 04:23 110-54-3 n-Hexane mg/kg 0.0073 1 ND trans-1,2-Dichloroethene 10/27/16 04:23 156-60-5 mg/kg 0.0073 1 M1 trans-1,3-Dichloropropene ND mg/kg 0.0073 1 10/27/16 04:23 10061-02-6 Surrogates Dibromofluoromethane (S) 282 %. 70-128 10/27/16 04:23 1868-53-7 S1 1 Toluene-d8 (S) 146 % 72-139 10/27/16 04:23 2037-26-5 S1 1 4-Bromofluorobenzene (S) 71 %. 65-127 10/27/16 04:23 460-00-4 1 Analytical Method: SM 2540G **Percent Moisture** % Percent Moisture 31.1 0 10 1 10/26/16 10:35

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: LAE001

Pace Project No.: 50157354

Sample: LAE001:Trip:W101916	Lab ID: 501	57354003	Collected: 10/19/	16 08:00	Received:	10/25/16 08:35	Matrix: Solid	
Results reported on a "wet-weight"	" basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035A VOA	Analytical Met	hod: EPA 82	260					
Acetone	ND	mg/kg	0.10	1		10/26/16 07:02	67-64-1	
Benzene	ND	mg/kg	0.0050	1		10/26/16 07:02	71-43-2	
Bromodichloromethane	ND	mg/kg	0.0050	1		10/26/16 07:02	75-27-4	
Bromoform	ND	mg/kg	0.0050	1		10/26/16 07:02	75-25-2	
Bromomethane	ND	mg/kg	0.0050	1		10/26/16 07:02	74-83-9	
2-Butanone (MEK)	ND	mg/kg	0.025	1		10/26/16 07:02	78-93-3	
Carbon disulfide	ND	mg/kg	0.010	1		10/26/16 07:02	75-15-0	
Carbon tetrachloride	ND	mg/kg	0.0050	1		10/26/16 07:02	56-23-5	
Chlorobenzene	ND	mg/kg	0.0050	1		10/26/16 07:02		
Chloroethane	ND	mg/kg	0.0050	1		10/26/16 07:02	75-00-3	
Chloroform	ND	mg/kg	0.0050	1		10/26/16 07:02	67-66-3	
Chloromethane	ND	mg/kg	0.0050	1		10/26/16 07:02	74-87-3	
Dibromochloromethane	ND	mg/kg	0.0050	1		10/26/16 07:02		
Dibromomethane	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,2-Dichlorobenzene	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,4-Dichlorobenzene	ND	mg/kg	0.0050	1		10/26/16 07:02		
Dichlorodifluoromethane	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,1-Dichloroethane	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,2-Dichloroethane	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,1-Dichloroethene	ND	mg/kg	0.0050	1		10/26/16 07:02		
cis-1,2-Dichloroethene	ND	mg/kg	0.0050	1		10/26/16 07:02		
trans-1,2-Dichloroethene	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,2-Dichloropropane	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,3-Dichloropropane	ND	mg/kg	0.0050	1		10/26/16 07:02		
cis-1,3-Dichloropropene	ND	mg/kg	0.0050	1		10/26/16 07:02		
trans-1,3-Dichloropropene	ND	mg/kg	0.0050	1		10/26/16 07:02		
Ethylbenzene	ND	mg/kg	0.0050	1		10/26/16 07:02		
Ethyl methacrylate	ND	mg/kg	0.10	1		10/26/16 07:02		
n-Hexane	ND	mg/kg	0.0050	1		10/26/16 07:02		
Isopropylbenzene (Cumene)	ND	mg/kg	0.0050	1		10/26/16 07:02		
Methylene Chloride	ND	mg/kg	0.020	1		10/26/16 07:02		
4-Methyl-2-pentanone (MIBK)	ND	mg/kg	0.020	1		10/26/16 07:02		
Methyl-tert-butyl ether	ND		0.025	1		10/26/16 07:02		
, ,	ND	mg/kg	0.0050	1		10/26/16 07:02		
Styrene		mg/kg				10/26/16 07:02		
1,1,1,2-Tetrachloroethane	ND	mg/kg	0.0050	1				
1,1,2,2-Tetrachloroethane	ND	mg/kg	0.0050	1		10/26/16 07:02 10/26/16 07:02		
Tetrachloroethene	ND	mg/kg	0.0050	1				<u></u>
Toluene	0.0077	mg/kg	0.0050	1		10/26/16 07:02		C0
1,2,4-Trichlorobenzene	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,1,1-Trichloroethane	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,1,2-Trichloroethane	ND	mg/kg	0.0050	1		10/26/16 07:02		
Trichloroethene	ND	mg/kg	0.0050	1		10/26/16 07:02		
Trichlorofluoromethane	ND	mg/kg	0.0050	1		10/26/16 07:02		
1,2,4-Trimethylbenzene	ND	mg/kg	0.0050	1		10/26/16 07:02		
Vinyl acetate	ND	mg/kg	0.10	1		10/26/16 07:02		
Vinyl chloride	ND	mg/kg	0.0050	1		10/26/16 07:02	75-01-4	

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

ANALYTICAL RESULTS

Project: LAE001

Pace Project No.: 50157354

Sample: LAE001:Trip:W101916	Lab ID: 501	57354003	Collected: 10/19/1	6 08:00	Received: 1	10/25/16 08:35 I	Matrix: Solid	
Results reported on a "wet-weight"	basis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV 5035A VOA	Analytical Met	hod: EPA 8260)					
Xylene (Total) <i>Surrogates</i>	ND	mg/kg	0.010	1		10/26/16 07:02	2 1330-20-7	
Dibromofluoromethane (S)	104	%.	70-128	1		10/26/16 07:02	1868-53-7	
Toluene-d8 (S)	98	%.	72-139	1		10/26/16 07:02	2037-26-5	
4-Bromofluorobenzene (S)	102	%.	65-127	1		10/26/16 07:02	460-00-4	

QUALITY CONTROL DATA

Project:	LAE001	1											
Pace Project No .:	501573	54											
QC Batch:	35812	25		Analys	is Method	: E	PA 7471						
QC Batch Method:	EPA 7	471		Analys	is Descrip	tion: 7	471 Mercury	/					
Associated Lab San	nples:	5015735400	1, 50157354002										
METHOD BLANK:	165567	3		Ν	Aatrix: Sol	id							
Associated Lab San	nples:	5015735400	1, 50157354002										
				Blank	K R	eporting							
Paran	neter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Mercury			mg/kg		ND	0.20	10/26/16	09:39					
LABORATORY CON	NTROL S	SAMPLE: 1	655674										
				Spike	LCS	6	LCS	% Re	с				
Paran	neter		Units	Conc.	Resu	ult	% Rec	Limits	s Q	ualifiers			
Mercury			mg/kg	.5		0.51	103	80	0-120		_		
MATRIX SPIKE & M	IATRIX S		CATE: 16556	75		1655676							
				MS	MSD								
			50157287001	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Paramete	er	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
Mercury		mg/kg	ND	.48	.52	0.46	0.49	95	95	75-125	7	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALITY CONTROL DATA

QC Batch: 35816	61		Analys	is Method:	El	PA 6010						
QC Batch Method: EPA 3	3050		Analys	is Descript	tion: 60	010 MET						
Associated Lab Samples:	50157354	001, 50157354002		·								
METHOD BLANK: 165577	71		N	/latrix: Soli	id							
Associated Lab Samples:	50157354	001, 50157354002										
			Blank	R R	eporting							
Parameter		Units	Resul	t	Limit	Analyz	ed	Qualifiers				
Arsenic		mg/kg	·		1.0	10/28/16	21.45					
Barium		mg/kg		ND	1.0							
Cadmium		mg/kg		ND	0.50							
Chromium		mg/kg		ND	1.0							
Lead		mg/kg		ND	1.0	10/28/16	21:45					
Selenium		mg/kg		ND	1.0	10/28/16	21:45					
Silver		mg/kg		ND	0.50	10/28/16	21:45					
LABORATORY CONTROL	SAMPLE:	1655772										
			Spike	LCS		LCS	% Rec					
Parameter		Units	Conc.	Resu	ilt	% Rec	Limits	Qı	ualifiers	_		
Arsenic		mg/kg	50		51.6	103	80	-120				
Barium		mg/kg	50		51.9	104	80	-120				
Cadmium		mg/kg	50		52.0	104	80	-120				
Chromium		mg/kg	50		51.0	102		-120				
Lead		mg/kg	50		50.9	102		-120				
Selenium		mg/kg	50		52.8	106		-120				
Silver		mg/kg	25		25.6	102	80	-120				
			70		4055774							
MATRIX SPIKE & MATRIX	SPIKE DUP	LICATE: 16557	/3 MS	MSD	1655774							
		50157326003	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Uni		Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
Arsenic	mg/	kg 4.8	53.5	52.9	61.0	59.1	105	103	75-125	3	20	
Barium	mg/	kg 11.3	53.5	52.9	64.6	62.8	99	98	75-125	3	20	
Cadmium	mg/	kg ND	53.5	52.9	55.2	54.7	103	103	75-125	1	20	
Chromium	mg/	-	53.5	52.9	54.7	56.6	90	95	75-125	3	20	
_ead	mg/	-	53.5	52.9	48.5	48.8	84	86	75-125		20	
Selenium	mg/	-	53.5	52.9	55.0	54.5	103	103	75-125		20	
Silver	mg/	kg ND	26.8	26.4	25.9	25.6	97	97	75-125	1	20	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

EPA 8260

8260 MSV 5030 Low

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001

Pace Project No.: 50157354

QC Batch Method:

QC Batch:

358363

EPA 8260

Analysis Method:

Matrix: Solid

Analysis Description:

Associated Lab Samples: 50157354001, 50157354002

METHOD BLANK: 1656591

Associated Lab Samples: 50157354001 50157354002

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
1,1,1,2-Tetrachloroethane	mg/kg	ND	0.0050	10/27/16 03:17	
1,1,1-Trichloroethane	mg/kg	ND	0.0050	10/27/16 03:17	
1,1,2,2-Tetrachloroethane	mg/kg	ND	0.0050	10/27/16 03:17	
1,1,2-Trichloroethane	mg/kg	ND	0.0050	10/27/16 03:17	
1,1-Dichloroethane	mg/kg	ND	0.0050	10/27/16 03:17	
1,1-Dichloroethene	mg/kg	ND	0.0050	10/27/16 03:17	
1,2,4-Trichlorobenzene	mg/kg	ND	0.0050	10/27/16 03:17	
1,2,4-Trimethylbenzene	mg/kg	ND	0.0050	10/27/16 03:17	
1,2-Dichlorobenzene	mg/kg	ND	0.0050	10/27/16 03:17	
1,2-Dichloroethane	mg/kg	ND	0.0050	10/27/16 03:17	
1,2-Dichloropropane	mg/kg	ND	0.0050	10/27/16 03:17	
1,3-Dichloropropane	mg/kg	ND	0.0050	10/27/16 03:17	
1,4-Dichlorobenzene	mg/kg	ND	0.0050	10/27/16 03:17	
2-Butanone (MEK)	mg/kg	ND	0.025	10/27/16 03:17	
4-Methyl-2-pentanone (MIBK)	mg/kg	ND	0.025	10/27/16 03:17	
Acetone	mg/kg	ND	0.10	10/27/16 03:17	
Benzene	mg/kg	ND	0.0050	10/27/16 03:17	
Bromodichloromethane	mg/kg	ND	0.0050	10/27/16 03:17	
Bromoform	mg/kg	ND	0.0050	10/27/16 03:17	
Bromomethane	mg/kg	ND	0.0050	10/27/16 03:17	
Carbon disulfide	mg/kg	ND	0.010	10/27/16 03:17	
Carbon tetrachloride	mg/kg	ND	0.0050	10/27/16 03:17	
Chlorobenzene	mg/kg	ND	0.0050	10/27/16 03:17	
Chloroethane	mg/kg	ND	0.0050	10/27/16 03:17	
Chloroform	mg/kg	ND	0.0050	10/27/16 03:17	
Chloromethane	mg/kg	ND	0.0050	10/27/16 03:17	
sis-1,2-Dichloroethene	mg/kg	ND	0.0050	10/27/16 03:17	
cis-1,3-Dichloropropene	mg/kg	ND	0.0050	10/27/16 03:17	
Dibromochloromethane	mg/kg	ND	0.0050	10/27/16 03:17	
Dibromomethane	mg/kg	ND	0.0050	10/27/16 03:17	
Dichlorodifluoromethane	mg/kg	ND	0.0050	10/27/16 03:17	
Ethyl methacrylate	mg/kg	ND	0.10	10/27/16 03:17	
Ethylbenzene	mg/kg	ND	0.0050	10/27/16 03:17	
sopropylbenzene (Cumene)	mg/kg	ND	0.0050	10/27/16 03:17	
Methyl-tert-butyl ether	mg/kg	ND	0.0050	10/27/16 03:17	
Aethylene Chloride	mg/kg	ND	0.020	10/27/16 03:17	
n-Hexane	mg/kg	ND	0.0050	10/27/16 03:17	
Styrene	mg/kg	ND	0.0050	10/27/16 03:17	
Tetrachloroethene	mg/kg	ND	0.0050	10/27/16 03:17	
Toluene	mg/kg	ND	0.0050	10/27/16 03:17	
rans-1,2-Dichloroethene	mg/kg	ND	0.0050	10/27/16 03:17	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157354

METHOD BLANK: 165659	91	Matrix:	Solid		
Associated Lab Samples:	50157354001, 50157354002				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	mg/kg	ND	0.0050	10/27/16 03:17	
Trichloroethene	mg/kg	ND	0.0050	10/27/16 03:17	
Trichlorofluoromethane	mg/kg	ND	0.0050	10/27/16 03:17	
Vinyl acetate	mg/kg	ND	0.10	10/27/16 03:17	
Vinyl chloride	mg/kg	ND	0.0050	10/27/16 03:17	
Xylene (Total)	mg/kg	ND	0.010	10/27/16 03:17	
4-Bromofluorobenzene (S)	%.	102	65-127	10/27/16 03:17	
Dibromofluoromethane (S)	%.	101	70-128	10/27/16 03:17	
Toluene-d8 (S)	%.	99	72-139	10/27/16 03:17	
LABORATORY CONTROL	SAMPLE: 1656592				
		Spike	I CS	ICS %F	Rec

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	mg/kg	.05	0.049	98	67-123	
1,1,2,2-Tetrachloroethane	mg/kg	.05	0.048	95	67-129	
1,1-Dichloroethene	mg/kg	.05	0.051	102	64-133	
1,2,4-Trimethylbenzene	mg/kg	.05	0.042	83	66-118	
1,2-Dichloropropane	mg/kg	.05	0.049	98	74-119	
Benzene	mg/kg	.05	0.048	96	72-120	
Chlorobenzene	mg/kg	.05	0.045	91	72-115	
Chloroform	mg/kg	.05	0.047	94	66-116	
cis-1,2-Dichloroethene	mg/kg	.05	0.050	101	74-115	
Ethylbenzene	mg/kg	.05	0.047	94	70-121	
Isopropylbenzene (Cumene)	mg/kg	.05	0.047	95	78-130	
Methyl-tert-butyl ether	mg/kg	.05	0.051	103	68-123	
Tetrachloroethene	mg/kg	.05	0.044	89	66-118	
Toluene	mg/kg	.05	0.046	91	68-121	
trans-1,2-Dichloroethene	mg/kg	.05	0.050	99	71-120	
Trichloroethene	mg/kg	.05	0.048	97	73-120	
Vinyl chloride	mg/kg	.05	0.053	107	54-155	
Xylene (Total)	mg/kg	.15	0.14	93	69-122	
4-Bromofluorobenzene (S)	%.			102	65-127	
Dibromofluoromethane (S)	%.			100	70-128	
Toluene-d8 (S)	%.			98	72-139	

MATRIX SPIKE & MATRIX SPI	KE DUPLIC	ATE: 16565	93		1656594						
			MS	MSD							
	5	50157354002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD Qual
1,1,1-Trichloroethane	mg/kg	ND	.073	.073	0.14	0.21	191	285	37-144	39	20 M1,R1
1,1,2,2-Tetrachloroethane	mg/kg	ND	.073	.073	0.069	0.051	94	71	12-174	29	20 R1
1,1-Dichloroethene	mg/kg	ND	.073	.073	0.32	0.25	445	338	36-162	27	20 M1,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157354

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 16565	93		1656594							
			MS	MSD								
	50	0157354002	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
1,2,4-Trimethylbenzene	mg/kg	ND	.073	.073	0.036	0.023	49	31	10-157	45	20	R1
1,2-Dichloropropane	mg/kg	ND	.073	.073	0.14	0.14	199	186	43-138	6	20	M1
Benzene	mg/kg	ND	.073	.073	0.12	0.097	165	133	36-144	21	20	M1,R1
Chlorobenzene	mg/kg	ND	.073	.073	0.072	0.043	99	60	16-140	50	20	R1
Chloroform	mg/kg	ND	.073	.073	0.21	0.20	293	277	39-136	6	20	M1
cis-1,2-Dichloroethene	mg/kg	ND	.073	.073	0.17	0.15	229	206	34-143	11	20	M1
Ethylbenzene	mg/kg	ND	.073	.073	0.12	0.076	165	105	15-147	45	20	M1,R1
Isopropylbenzene (Cumene)	mg/kg	ND	.073	.073	0.12	0.074	161	102	10-163	45	20	R1
Methyl-tert-butyl ether	mg/kg	ND	.073	.073	0.12	0.19	159	255	48-145	46	20	M1,R1
Tetrachloroethene	mg/kg	ND	.073	.073	0.19	0.14	263	189	14-156	33	20	M1,R1
Toluene	mg/kg	ND	.073	.073	0.13	0.089	180	123	24-151	38	20	M1,R1
trans-1,2-Dichloroethene	mg/kg	ND	.073	.073	0.17	0.15	231	204	33-147	12	20	M1
Trichloroethene	mg/kg	ND	.073	.073	0.15	0.12	206	161	21-164	24	20	M1,R1
Vinyl chloride	mg/kg	ND	.073	.073	0.31	0.30	420	414	32-177	1	20	M1
Xylene (Total)	mg/kg	ND	.22	.22	0.25	0.15	113	67	12-148	50	20	RS
4-Bromofluorobenzene (S)	%.						81	81	65-127			
Dibromofluoromethane (S)	%.						262	267	70-128			S1
Toluene-d8 (S)	%.						133	135	72-139			S1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001

Pace Project No.: 50157354

QC Batch:

QC Batch Method:

Analysis Method: Analysis Description:

Matrix: Solid

EPA 8260 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 50157354003

358124

EPA 8260

METHOD BLANK: 1655671

Associated Lab Samples: 50157354003

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
,1,1,2-Tetrachloroethane			0.0050	10/26/16 03:09	
,1,1,2-retrachioroethane	mg/kg mg/kg	ND	0.0050	10/26/16 03:09	
,1,2,2-Tetrachloroethane		ND	0.0050	10/26/16 03:09	
,1,2-Trichloroethane	mg/kg	ND	0.0050	10/26/16 03:09	
, ,	mg/kg		0.0050		
,1-Dichloroethane	mg/kg	ND		10/26/16 03:09	
,1-Dichloroethene	mg/kg	ND	0.0050	10/26/16 03:09	
,2,4-Trichlorobenzene	mg/kg	ND	0.0050	10/26/16 03:09	
,2,4-Trimethylbenzene	mg/kg	ND	0.0050	10/26/16 03:09	
,2-Dichlorobenzene	mg/kg	ND	0.0050	10/26/16 03:09	
,2-Dichloroethane	mg/kg	ND	0.0050	10/26/16 03:09	
,2-Dichloropropane	mg/kg	ND	0.0050	10/26/16 03:09	
,3-Dichloropropane	mg/kg	ND	0.0050	10/26/16 03:09	
,4-Dichlorobenzene	mg/kg	ND	0.0050	10/26/16 03:09	
-Butanone (MEK)	mg/kg	ND	0.025	10/26/16 03:09	
-Methyl-2-pentanone (MIBK)	mg/kg	ND	0.025	10/26/16 03:09	
cetone	mg/kg	ND	0.10	10/26/16 03:09	
senzene	mg/kg	ND	0.0050	10/26/16 03:09	
Bromodichloromethane	mg/kg	ND	0.0050	10/26/16 03:09	
Bromoform	mg/kg	ND	0.0050	10/26/16 03:09	
Bromomethane	mg/kg	ND	0.0050	10/26/16 03:09	
arbon disulfide	mg/kg	ND	0.010	10/26/16 03:09	
arbon tetrachloride	mg/kg	ND	0.0050	10/26/16 03:09	
Chlorobenzene	mg/kg	ND	0.0050	10/26/16 03:09	
Chloroethane	mg/kg	ND	0.0050	10/26/16 03:09	
Chloroform	mg/kg	ND	0.0050	10/26/16 03:09	
Chloromethane	mg/kg	ND	0.0050	10/26/16 03:09	
is-1,2-Dichloroethene	mg/kg	ND	0.0050	10/26/16 03:09	
is-1,3-Dichloropropene	mg/kg	ND	0.0050	10/26/16 03:09	
Dibromochloromethane	mg/kg	ND	0.0050	10/26/16 03:09	
Dibromomethane	mg/kg	ND	0.0050	10/26/16 03:09	
Dichlorodifluoromethane	mg/kg	ND	0.0050	10/26/16 03:09	
thyl methacrylate	mg/kg	ND	0.10	10/26/16 03:09	
thylbenzene	mg/kg	ND	0.0050	10/26/16 03:09	
sopropylbenzene (Cumene)	mg/kg	ND	0.0050	10/26/16 03:09	
lethyl-tert-butyl ether	mg/kg	ND	0.0050	10/26/16 03:09	
lethylene Chloride	mg/kg	ND	0.020	10/26/16 03:09	
-Hexane	mg/kg	ND	0.0050	10/26/16 03:09	
Styrene	mg/kg	ND	0.0050	10/26/16 03:09	
etrachloroethene	mg/kg	ND	0.0050	10/26/16 03:09	
oluene	mg/kg	ND	0.0050	10/26/16 03:09	
ans-1,2-Dichloroethene	mg/kg	ND	0.0050	10/26/16 03:09	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157354

METHOD BLANK: 1655671		Matrix:	Solid		
Associated Lab Samples: 5015735	4003				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
trans-1,3-Dichloropropene	mg/kg	ND	0.0050	10/26/16 03:09	
Trichloroethene	mg/kg	ND	0.0050	10/26/16 03:09	
Trichlorofluoromethane	mg/kg	ND	0.0050	10/26/16 03:09	
Vinyl acetate	mg/kg	ND	0.10	10/26/16 03:09	
Vinyl chloride	mg/kg	ND	0.0050	10/26/16 03:09	
Xylene (Total)	mg/kg	ND	0.010	10/26/16 03:09	
4-Bromofluorobenzene (S)	%.	101	65-127	10/26/16 03:09	
Dibromofluoromethane (S)	%.	103	70-128	10/26/16 03:09	
Toluene-d8 (S)	%.	99	72-139	10/26/16 03:09	

LABORATORY CONTROL SAMPLE: 1655672

Deremeter	Linito	Spike	LCS Deput	LCS	% Rec	Qualifiara
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
1,1,1-Trichloroethane	mg/kg	.05	0.050	101	67-123	
1,1,2,2-Tetrachloroethane	mg/kg	.05	0.051	101	67-129	
1,1-Dichloroethene	mg/kg	.05	0.051	103	64-133	
1,2,4-Trimethylbenzene	mg/kg	.05	0.043	87	66-118	
1,2-Dichloropropane	mg/kg	.05	0.050	100	74-119	
Benzene	mg/kg	.05	0.049	97	72-120	
Chlorobenzene	mg/kg	.05	0.046	91	72-115	
Chloroform	mg/kg	.05	0.046	93	66-116	
cis-1,2-Dichloroethene	mg/kg	.05	0.050	100	74-115	
Ethylbenzene	mg/kg	.05	0.048	96	70-121	
Isopropylbenzene (Cumene)	mg/kg	.05	0.047	94	78-130	
Methyl-tert-butyl ether	mg/kg	.05	0.053	106	68-123	
Tetrachloroethene	mg/kg	.05	0.046	93	66-118	
Toluene	mg/kg	.05	0.046	92	68-121	
trans-1,2-Dichloroethene	mg/kg	.05	0.051	101	71-120	
Trichloroethene	mg/kg	.05	0.049	98	73-120	
Vinyl chloride	mg/kg	.05	0.053	107	54-155	
Xylene (Total)	mg/kg	.15	0.14	94	69-122	
4-Bromofluorobenzene (S)	%.			100	65-127	
Dibromofluoromethane (S)	%.			100	70-128	
Toluene-d8 (S)	%.			100	72-139	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 Tetrachloro-m-xylene (S) %. .16 .17 0.15 0.16 93 95 10-131 2 20 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655732 1655733 MS MSD Spike Spike MS MSD MS MSD % Rec Limits RPD RPD Quadities Parameter Units Result Conc. Conc. Result % Rec % Rec Limits RPD RPD Quadities PCB-1016 (Aroclor 1016) mg/kg ND .17 .17 0.16 0.16 86 88 10-141 2 20 20 PCB-1260 (Aroclor 1260) mg/kg ND .17 .17	QC Batch: 358147	7		Analys	is Method:	EF	PA 8082						
METHOD BLANK: 1655728 Matrix: Solid Associated Lab Samples: 50157354001, 50157354002 Blank Reporting Qualifiers PCB-1016 (Aroclor 1016) mg/kg ND 0.10 10/26/16 19:09 Qualifiers PCB-1221 (Aroclor 1221) mg/kg ND 0.10 10/26/16 19:09 Qualifiers PCB-1222 (Aroclor 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1242 (Aroclor 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1248 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1248 (Aroclor 1240) mg/kg ND 0.10 10/26/16 19:09 PCB-1246 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1264 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1256 (Aroclor 1260) mg/kg .16 0.15 92 40-107 41:110 PCB-1264 (Aroclor 1260) mg/kg .16 0.18 107 41:110 2 20 PCB-1016 (Aroclor 1016) mg/kg <	QC Batch Method: EPA 35	46		Analys	is Descripti	ion: 80	82 GCS PC	В					
Associated Lab Samples: 50157354001, 50157354002 Parameter Units Result Reporting Limit Analyzed Analyzed Qualifiers PCB-1016 (Aroclor 1016) mg/kg ND 0.10 10/26/16 19:09 PCB-1221 (Aroclor 1222) mg/kg ND 0.10 10/26/16 19:09 PCB-1224 (Aroclor 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1224 (Aroclor 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1248 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1016 (Aroclor 1016) mg/kg .16 0.15 92 40-107 PCB-1264 (Aroclor 1260) MSD MSD Sister 100	Associated Lab Samples:	50157354001,	50157354002	-									
Blank PCB-1016 (Aroclor 1016) mg/kg mg/kg ND 0.10 10/26/16 19:09 10/26/16 19:09 Qualifiers PCB-1221 (Aroclor 1221) mg/kg ND 0.10 10/26/16 19:09 PCB-1224 (Aroclor 1222) mg/kg ND 0.10 10/26/16 19:09 PCB-1224 (Aroclor 1222) mg/kg ND 0.10 10/26/16 19:09 PCB-1242 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1242 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1242 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1242 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1262 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1016 (Aroclor 1016) mg/kg .16 0.15 92 40-107 Qualifiers PCB-1016 (Aroclor 1016) mg/kg .16 0.18 107 41-110 Tarachloro-m-xylene (S) %. 77 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MSD MSD % Rec	METHOD BLANK: 1655728			N	Atrix: Solio	d							
Parameter Units Result Limit Analyzed Qualifiers PCB-1016 (Arocior 1016) mg/kg ND 0.10 10/26/16 19:09 0 PCB-1221 (Arocior 1221) mg/kg ND 0.10 10/26/16 19:09 0 PCB-1223 (Arocior 1242) mg/kg ND 0.10 10/26/16 19:09 0 PCB-1226 (Arocior 1242) mg/kg ND 0.10 10/26/16 19:09 0 PCB-1226 (Arocior 1250) mg/kg ND 0.10 10/26/16 19:09 0 PCB-1226 (Arocior 1260) mg/kg ND 0.10 10/26/16 19:09 0 PCB-1260 (Arocior 1260) mg/kg ND 0.10 10/26/16 19:09 0 Parameter Units Conc. Result % Rec Limits Qualifiers PCB-1260 (Arocior 1026) mg/kg .16 0.15 92 40-107 PCB-1016 (Arocior 1026) mg/kg ND .16 0.15 92 40-107 PCB-1016 (Arocior 1016) mg/kg ND <td>Associated Lab Samples:</td> <td>50157354001,</td> <td>50157354002</td> <td></td>	Associated Lab Samples:	50157354001,	50157354002										
Parameter Units Result Limit Analyzed Qualifiers PCB-1016 (Aroclor 1016) mg/kg ND 0.10 10/26/16 19:09 Qualifiers PCB-121 (Aroclor 1221) mg/kg ND 0.10 10/26/16 19:09 PCB-1224 (Aroclor 1223) PCB-1224 (Aroclor 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1236 (Aroclor 1242) PCB-1248 (Aroclor 1254) mg/kg ND 0.10 10/26/16 19:09 PCB-1268 (Aroclor 1254) PCB-1268 (Aroclor 1254) mg/kg ND 0.10 10/26/16 19:09 PCB-1268 (Aroclor 1260) mg/kg PCB-1268 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1268 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1268 (Aroclor 1260) mg/kg .16 0.15 92 40-107 PCB-1268 (Aroclor 1260) mg/kg .16 0.16 17 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655731 MSD MSD MSD MSD Parameter Units <td></td> <td></td> <td></td> <td>Blank</td> <td>Re</td> <td>eporting</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				Blank	Re	eporting							
PCB-1221 (Aroclor 1221) mg/kg ND 0.10 10/26/16 19:09 PCB-1232 (Aroclor 1232) mg/kg ND 0.10 10/26/16 19:09 PCB-1242 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1248 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1260 (Aroclor 1250) mg/kg ND 0.10 10/26/16 19:09 PCB-1260 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1260 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1260 (Aroclor 1260) mg/kg ND 0.16 0.15 92 40-107 PCB-1260 (Aroclor 1260) mg/kg .16 0.15 92 40-107 PCB-1260 (Aroclor 1260) mg/kg .16 0.15 92 40-107 PCB-1260 (Aroclor 1260) mg/kg .16 0.18 107 41-110 Tetrachloro-m-xylene (S) %. 77 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.15 0.16 93 95 10-131 2 20 PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.15 0.16 93 95 10-131 2 20 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655732 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1657732 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 165773 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1657	Parameter		Units	Result			Analyz	ed	Qualifiers				
PCB-1232 (Àroclor 1232) mg/kg ND 0.10 10/26/16 19:09 PCB-1242 (Aroclor 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1248 (Aroclor 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1254) mg/kg ND 0.10 10/26/16 19:09 PCB-1260 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1260 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 Tetrachloro-m-xylene (S) %. 79 24-99 10/26/16 19:09 PCB-1016 (Aroclor 1016) mg/kg .16 0.15 92 40-107 PCB-1016 (Aroclor 1260) mg/kg .16 0.18 107 41-110 PCB-1016 (Aroclor 1260) mg/kg .16 0.18 107 41-110 PCB-1016 (Aroclor 1260) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.15 0.16 93 95 10-141 2 20 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655732 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 165732 PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.15 0.16 93 81 81 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 165732 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 125732 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 125732 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 125732 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1	PCB-1016 (Aroclor 1016)		mg/kg		ND	0.10	10/26/16	19:09					
PCB-1242 (Arocior 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1248 (Arocior 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Arocior 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Arocior 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Arocior 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Arocior 1260) mg/kg ND 0.10 10/26/16 19:09 LABORATORY CONTROL SAMPLE: 1655729 Conc. Result % Rec Limits Qualifiers PCB-1016 (Arocior 1016) mg/kg .16 0.15 92 40-107 PCB-1016 (Arocior 1260) mg/kg .16 0.15 92 40-147 PCB-1016 (Arocior 1260) mg/kg .16 0.17 0.14 0.14 84 86 10-141 2 20 PCB-1016 (Arocior 1260) mg/kg ND .16 .17 0.14 0.14 <td>PCB-1221 (Aroclor 1221)</td> <td></td> <td>mg/kg</td> <td></td> <td>ND</td> <td>0.10</td> <td>10/26/16</td> <td>19:09</td> <td></td> <td></td> <td></td> <td></td> <td></td>	PCB-1221 (Aroclor 1221)		mg/kg		ND	0.10	10/26/16	19:09					
PCB-1242 (Aroclor 1242) mg/kg ND 0.10 10/26/16 19:09 PCB-1248 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1260 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 LABORATORY CONTROL SAMPLE: 1655729 LCS LCS LCS LCS LCS Units Qualifiers PCB-1016 (Aroclor 1260) mg/kg .16 0.15 92 40-107 41-110 Tetrachloro-m-xylene (S) %. Spike Spike MS MSD Kec Limits RPD Max PCB-1016 (Aroclor 1260) mg/kg ND .16 .17 0.14 0.	PCB-1232 (Aroclor 1232)		mg/kg		ND	0.10	10/26/16	19:09					
PCB-1248 (Aroclor 1248) mg/kg ND 0.10 10/26/16 19:09 PCB-1254 (Aroclor 1254) mg/kg ND 0.10 10/26/16 19:09 PCB-1250 (Aroclor 1250) mg/kg ND 0.10 10/26/16 19:09 Tetrachloro-m-xylene (S) %. 79 24-99 10/26/16 19:09 LABORATORY CONTROL SAMPLE: 1655729 LABORATORY CONTROL SAMPLE: 1655729 PCB-1016 (Aroclor 1260) mg/kg .16 0.15 92 40-107 PCB-1026 (Aroclor 1260) mg/kg .16 0.15 92 40-107 PCB-1026 (Aroclor 1260) mg/kg .16 0.18 107 41-110 Tetrachloro-m-xylene (S) %. 77 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 MS MSD MSD MSD MSD MSD MSD MSD MSD MSD M					ND	0.10	10/26/16	19:09					
PCB-1254 (Aroclor 1254) mg/kg ND 0.10 10/26/16 19:09 PCB-1250 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 PCB-1250 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 Iterachloro-m-xylene (S) %. 79 24-99 10/26/16 19:09 Iterachloro-m-xylene (S) %. 79 24-99 10/26/16 19:09 Iterachloro-m-xylene (S) mg/kg .16 0.15 92 40-107 PCB-1260 (Aroclor 1260) mg/kg .16 0.18 107 41-110 Tetrachloro-m-xylene (S) %. 77 24-99 Max Max PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.16	· · · · · ·				ND	0.10	10/26/16	19:09					
PCB-1260 (Aroclor 1260) mg/kg ND 0.10 10/26/16 19:09 Tetrachloro-m-xylene (S) %. 79 24-99 10/26/16 19:09 LABORATORY CONTROL SAMPLE: 1655729 Spike LCS LCS MRc Limits Qualifiers Parameter Units Conc. Result % Rec Limits Qualifiers PCB-1016 (Aroclor 1016) mg/kg .16 0.15 92 40-107 PCB-10260 (Aroclor 1260) mg/kg .16 0.18 107 41-110 Tetrachloro-m-xylene (S) %. 77 24-99 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MS MSD Spike MS MSD MSD MSD 20 PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.16 93 <td< td=""><td>PCB-1254 (Aroclor 1254)</td><td></td><td></td><td></td><td>ND</td><td>0.10</td><td>10/26/16</td><td>19:09</td><td></td><td></td><td></td><td></td><td></td></td<>	PCB-1254 (Aroclor 1254)				ND	0.10	10/26/16	19:09					
Tetrachloro-m-xylene (S) %. 79 24-99 10/26/16 19:09 LABORATORY CONTROL SAMPLE: 1655729 Spike LCS Kec Limits Qualifiers PCB-1016 (Aroclor 1016) mg/kg .16 0.15 92 40:107 Qualifiers PCB-10260 (Aroclor 1260) mg/kg .16 0.18 107 41:110 Tetrachloro-m-xylene (S) %. 77 24-99 Xerc Xerc MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MSD MSD MSD MSD MSD Xerc % Rec Limits RPD RPD Qualifiers PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-114 2 20 PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 20 20 20 20 20 20 20 20 20					ND	0.10	10/26/16	19:09					
Parameter Units Spike Conc. LCS Result LCS % Rec LCS Limits Qualifiers PCB-1016 (Aroclor 1016) mg/kg .16 0.15 92 40-107 PCB-1260 (Aroclor 1260) mg/kg .16 0.18 107 41-110 PCB-1260 (Aroclor 1260) %. 77 24-99 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MS MSD Spike MSD Parameter Units Result Conc. PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-10260 (Aroclor 1260) mg/kg ND .16 .17 0.15 0.16 93 95 10-131 2 20 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655732 1655733 <td< td=""><td>Tetrachloro-m-xylene (S)</td><td></td><td></td><td></td><td>79</td><td>24-99</td><td>10/26/16</td><td>19:09</td><td></td><td></td><td></td><td></td><td></td></td<>	Tetrachloro-m-xylene (S)				79	24-99	10/26/16	19:09					
Parameter Units Spike Conc. LCS Result LCS % Rec LCS Limits Qualifiers PCB-1016 (Aroclor 1016) mg/kg .16 0.15 92 40-107 PCB-1260 (Aroclor 1260) mg/kg .16 0.18 107 41-110 Tetrachloro-m-xylene (S) %. 77 24-99 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MS MSD Spike MS MSD Parameter Units Result Conc. Result Result NSD PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-10260 (Aroclor 1260) mg/kg ND .16 .17 0.15 0.16 93 95 10-131 2 20 MATRIX SPIKE &			55700										
Parameter Units Conc. Result % Rec Limits Qualifiers PCB-1016 (Aroclor 1016) mg/kg .16 0.15 92 40-107 PCB-1260 (Aroclor 1260) mg/kg .16 0.18 107 41-110 Tetrachloro-m-xylene (S) %. 77 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MS MSD Spike Spike MS Parameter Units Result Conc. Result % Rec Limits RPD RPD Qualifiers PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655732 1655733 MSD 81 81 24-99 20 MATRIX SPIKE & MATRIX SPIKE DUPLICATE:	LADURATURT CUNTRUL 3/	AWFLE. 10:	55729	Sniko	109		109	% Roc					
PCB-1260 (Aroclor 1260) mg/kg .16 0.18 107 41-110 Tetrachloro-m-xylene (S) %. 1655731 77 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MS MSD Spike Spike Spike MS MSD MSD %Rec Max Parameter Units Result Conc. Conc. Result MSD MSD %Rec Max PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20	Parameter		Units							ualifiers			
Tetrachloro-m-xylene (S) %. 77 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MS MSD MSD MSD MSD MSD % Rec Limits RPD RPD Quadity Parameter Units Result Conc. Conc. Result % Rec % Rec Limits RPD RPD Quadity PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20<	PCB-1016 (Aroclor 1016)		mg/kg	.16		0.15	92	40	-107		-		
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655730 1655731 MS MSD	PCB-1260 (Aroclor 1260)		mg/kg	.16		0.18	107	41	-110				
MS MSD	Tetrachloro-m-xylene (S)		%.				77	2	4-99				
MS MSD	MATRIX SPIKE & MATRIX SI		ATE: 165573	30		1655731							
Parameter Units Result Conc. Spike MS MSD MSD MSD % Rec Max			100010		MSD	1000101							
Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD RPD Quadratic PCB-1016 (Aroclor 1016) mg/kg ND .16 .17 0.14 0.14 84 86 10-141 2 20 20 PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.15 0.16 93 95 10-131 2 20		Ę	50157353001			MS	MSD	MS	MSD	% Rec		Max	
PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.15 0.16 93 95 10-131 2 20 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655732 1655733 MS MSD Spike MS MSD	Parameter				•	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qua
PCB-1260 (Aroclor 1260) mg/kg ND .16 .17 0.15 0.16 93 95 10-131 2 20 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655732 1655733 MS MSD Spike MS MSD	PCB-1016 (Arodor 1016)			16	17	0.14	0.14	Q./	00	10 1/1			
Tetrachloro-m-xylene (S) %. 81 81 24-99 MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1655732 1655733 MS MSD MSD MSD MSD MSD % Rec Max Parameter Units Result Conc. Conc. Result % Rec % Rec Limits RPD RPD Quadities PCB-1016 (Aroclor 1016) mg/kg ND .17 .17 0.16 0.16 86 88 10-141 2 20 PCB-1260 (Aroclor 1260) mg/kg ND .17 .17 0.17 0.17 97 97 10-131 0 20													
MS MSD	· · · · · ·		ND	.10	.17	0.10	0.10				2	20	
MS MSD	MATRIX SPIKE & MATRIX SI		ATE: 16557	32		1655733							
Parameter 50157353002 Spike Spike MS MSD					MSD								
Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits RPD Quitation PCB-1016 (Aroclor 1016) mg/kg ND .17 .17 0.16 0.16 86 88 10-141 2 20 20 PCB-1260 (Aroclor 1260) mg/kg ND .17 .17 0.17 0.17 97 97 10-131 0 20		Ę	50157353002			MS	MSD	MS	MSD	% Rec		Max	
PCB-1260 (Aroclor 1260) mg/kg ND .17 .17 0.17 0.17 97 97 10-131 0 20	Parameter				•						RPD		Qua
PCB-1260 (Aroclor 1260) mg/kg ND .17 .17 0.17 0.17 97 97 10-131 0 20	PCB-1016 (Aroclor 1016)	mg/kg	ND	.17	.17	0.16	0.16	86	88	10-141	2	20	
	Fetrachloro-m-xylene (S)	%.						81	82	24-99			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001

Pace Project No.: 50157354

QC Batch Method:

QC Batch: 358'

358149

Analysis Method: Analysis Description: EPA 8270 8270 Solid MSSV Microwave Short Spike

Associated Lab Samples: 50157354001, 50157354002

EPA 3546

METHOD BLANK: 1655736 Matrix: Solid Associated Lab Samples: 50157354001, 50157354002 Blank Reporting Result Limit Qualifiers Parameter Units Analyzed 2,4,5-Trichlorophenol ND 0.33 10/27/16 10:35 mg/kg 2,4,6-Trichlorophenol mg/kg ND 0.33 10/27/16 10:35 ND 2,4-Dichlorophenol mg/kg 0.33 10/27/16 10:35 2,4-Dimethylphenol ND mg/kg 0.33 10/27/16 10:35 2,4-Dinitrophenol mg/kg ND 1.6 10/27/16 10:35 2,4-Dinitrotoluene mg/kg ND 0.33 10/27/16 10:35 2,6-Dinitrotoluene mg/kg ND 0.33 10/27/16 10:35 2-Chloronaphthalene mg/kg ND 0.33 10/27/16 10:35 2-Chlorophenol mg/kg ND 0.33 10/27/16 10:35 2-Methylnaphthalene mg/kg ND 0.33 10/27/16 10:35 2-Methylphenol(o-Cresol) ND 0.33 10/27/16 10:35 mg/kg 3&4-Methylphenol(m&p Cresol) ND 0.66 10/27/16 10:35 mg/kg ND 4-Chloro-3-methylphenol 0.66 10/27/16 10:35 mg/kg 0.66 4-Chloroaniline ND 10/27/16 10:35 mg/kg Acenaphthene ND 0.33 mg/kg 10/27/16 10:35 Acenaphthylene mg/kg ND 0.33 10/27/16 10:35 Anthracene mg/kg ND 0.33 10/27/16 10:35 Benzo(a)anthracene mg/kg ND 0.33 10/27/16 10:35 ND 0.33 10/27/16 10:35 Benzo(a)pyrene mg/kg ND 0.33 10/27/16 10:35 Benzo(b)fluoranthene mg/kg mg/kg Benzo(g,h,i)perylene ND 0.33 10/27/16 10:35 mg/kg Benzo(k)fluoranthene ND 0.33 10/27/16 10:35 bis(2-Chloroethoxy)methane ND 0.33 10/27/16 10:35 mg/kg bis(2-Chloroethyl) ether ND 0.33 10/27/16 10:35 mg/kg bis(2-Ethylhexyl)phthalate ND 0.33 10/27/16 10:35 mg/kg bis(2chloro1methylethyl) ether mg/kg ND 0.33 10/27/16 10:35 ND Butylbenzylphthalate mg/kg 0.33 10/27/16 10:35 Chrysene mg/kg ND 0.33 10/27/16 10:35 Di-n-butylphthalate mg/kg ND 0.33 10/27/16 10:35 Di-n-octylphthalate ND 0.33 10/27/16 10:35 mg/kg Dibenz(a,h)anthracene mg/kg ND 0.33 10/27/16 10:35 Diethylphthalate mg/kg ND 0.33 10/27/16 10:35 Fluoranthene mg/kg ND 0.33 10/27/16 10:35 Fluorene mg/kg ND 0.33 10/27/16 10:35 Hexachlorocyclopentadiene mg/kg ND 0.33 10/27/16 10:35 Hexachloroethane mg/kg ND 0.33 10/27/16 10:35 Indeno(1,2,3-cd)pyrene ND 0.33 10/27/16 10:35 mg/kg ND 0.33 Isophorone mg/kg 10/27/16 10:35 N-Nitroso-di-n-propylamine mg/kg ND 0.33 10/27/16 10:35 N-Nitrosodiphenylamine mg/kg ND 0.33 10/27/16 10:35 Naphthalene mg/kg ND 0.33 10/27/16 10:35

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157354

METHOD BLANK: 16557	Matrix:	Solid			
Associated Lab Samples:	50157354001, 50157354002				
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Nitrobenzene	mg/kg	ND	0.33	10/27/16 10:35	
Phenanthrene	mg/kg	ND	0.33	10/27/16 10:35	
Phenol	mg/kg	ND	0.33	10/27/16 10:35	
Pyrene	mg/kg	ND	0.33	10/27/16 10:35	
2,4,6-Tribromophenol (S)	%.	78	18-110	10/27/16 10:35	
2-Fluorobiphenyl (S)	%.	76	22-96	10/27/16 10:35	
2-Fluorophenol (S)	%.	73	23-110	10/27/16 10:35	
Nitrobenzene-d5 (S)	%.	81	22-97	10/27/16 10:35	
p-Terphenyl-d14 (S)	%.	96	17-102	10/27/16 10:35	
Phenol-d5 (S)	%.	68	28-108	10/27/16 10:35	

LABORATORY CONTROL SAMPLE: 1655737

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
2,4-Dinitrotoluene	mg/kg	3.3	2.7	82	37-115	
2-Chlorophenol	mg/kg	3.3	2.4	71	44-100	
2-Methylnaphthalene	mg/kg	3.3	3.0	91	33-110	
4-Chloro-3-methylphenol	mg/kg	3.3	3.0	91	42-113	
Acenaphthene	mg/kg	3.3	2.5	77	44-102	
Acenaphthylene	mg/kg	3.3	2.6	79	44-102	
Anthracene	mg/kg	3.3	2.8	84	48-107	
Benzo(a)anthracene	mg/kg	3.3	2.8	84	50-105	
Benzo(a)pyrene	mg/kg	3.3	2.8	86	48-116	
Benzo(b)fluoranthene	mg/kg	3.3	2.8	84	45-114	
Benzo(g,h,i)perylene	mg/kg	3.3	2.6	78	43-112	
Benzo(k)fluoranthene	mg/kg	3.3	2.6	78	47-114	
Chrysene	mg/kg	3.3	2.7	83	49-106	
Dibenz(a,h)anthracene	mg/kg	3.3	2.7	80	44-113	
Fluoranthene	mg/kg	3.3	2.8	84	46-111	
Fluorene	mg/kg	3.3	2.6	79	45-105	
Indeno(1,2,3-cd)pyrene	mg/kg	3.3	2.6	79	45-112	
N-Nitroso-di-n-propylamine	mg/kg	3.3	2.2	67	38-95	
Naphthalene	mg/kg	3.3	2.8	84	41-94	
Phenanthrene	mg/kg	3.3	2.8	84	48-106	
Phenol	mg/kg	3.3	2.4	73	42-102	
Pyrene	mg/kg	3.3	2.6	78	49-110	
2,4,6-Tribromophenol (S)	%.			83	18-110	
2-Fluorobiphenyl (S)	%.			76	22-96	
2-Fluorophenol (S)	%.			73	23-110	
Nitrobenzene-d5 (S)	%.			82	22-97	
p-Terphenyl-d14 (S)	%.			94	17-102	
Phenol-d5 (S)	%.			70	28-108	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA

Project: LAE001 Pace Project No.: 50157354

MATRIX SPIKE & MATRIX SP	IKE DUPLIC	ATE: 16557			1655739							
	5	0157354001	MS Spike	MSD Spike	MS	MSD	MS	MSD	% Rec		Мах	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD		Qual
2,4-Dinitrotoluene	mg/kg	ND	4.4	4.4	1.2	0.94	27	21	12-108	25	20	R1
2-Chlorophenol	mg/kg	ND	4.4	4.4	1.4	1.3	32	29	27-99	8	20	
2-Methylnaphthalene	mg/kg	ND	4.4	4.4	1.4	1.2	33	26	17-113	23	20	R1
4-Chloro-3-methylphenol	mg/kg	ND	4.4	4.4	1.5	1.2	33	28	24-111	16	20	
Acenaphthene	mg/kg	ND	4.4	4.4	1.1	0.91	26	20	28-96	23	20	M1,R1
Acenaphthylene	mg/kg	ND	4.4	4.4	1.0	0.82	23	18	17-109	21	20	R1
Anthracene	mg/kg	ND	4.4	4.4	0.68	0.64	15	14	23-104	6	20	M1
Benzo(a)anthracene	mg/kg	ND	4.4	4.4	0.49	0.61	11	14	16-109	23	20	M1,R1
Benzo(a)pyrene	mg/kg	ND	4.4	4.4	.37J	0.50	8	11	14-112		20	M1
Benzo(b)fluoranthene	mg/kg	ND	4.4	4.4	.41J	0.50	9	11	10-117		20	M1
Benzo(g,h,i)perylene	mg/kg	ND	4.4	4.4	.26J	.39J	6	9	10-110		20	M1
Benzo(k)fluoranthene	mg/kg	ND	4.4	4.4	.42J	0.58	10	13	18-108		20	M1
Chrysene	mg/kg	ND	4.4	4.4	0.51	0.62	11	14	23-100	19	20	M1
Dibenz(a,h)anthracene	mg/kg	ND	4.4	4.4	.31J	0.46	7	10	18-105		20	M1
Fluoranthene	mg/kg	ND	4.4	4.4	0.62	0.66	14	15	16-111	6	20	M1
Fluorene	mg/kg	ND	4.4	4.4	0.93	0.77	21	17	25-101	19	20	M1
Indeno(1,2,3-cd)pyrene	mg/kg	ND	4.4	4.4	.28J	.42J	6	9	11-107		20	M1
N-Nitroso-di-n-propylamine	mg/kg	ND	4.4	4.4	2.0	2.1	45	47	28-89	4	20	
Naphthalene	mg/kg	ND	4.4	4.4	1.5	1.2	34	27	26-95	23	20	R1
Phenanthrene	mg/kg	ND	4.4	4.4	0.74	0.69	17	16	24-105	6	20	M1
Phenol	mg/kg	ND	4.4	4.4	1.6	1.6	35	36	23-99	1	20	
Pyrene	mg/kg	ND	4.4	4.4	0.57	0.61	13	14	25-107	7	20	M1
2,4,6-Tribromophenol (S)	%.						34	26	18-110			
2-Fluorobiphenyl (S)	%.						41	30	22-96			
2-Fluorophenol (S)	%.						44	42	23-110			
Nitrobenzene-d5 (S)	%.						45	40	22-97			
p-Terphenyl-d14 (S)	%.						32	26	17-102			
Phenol-d5 (S)	%.						41	41	28-108			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project:	LAE001								
Pace Project No .:	50157354								
QC Batch:	358185		Analysis Meth	od:	SM 2540G				
QC Batch Method:	SM 2540G		Analysis Desc	ription:	Dry Weight/Pe	ercent N	<i>l</i> oisture		
Associated Lab Sar	nples: 50157354	001, 50157354002							
SAMPLE DUPLICA	TE: 1655853								
_			50156898001	Dup			Max		
Parar	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	13.9	12	2.7	9		5 R1	
SAMPLE DUPLICA	TE: 1655854								
			50157384002	Dup			Max		
Parar	neter	Units	Result	Result	RPD		RPD	Qualifiers	
Percent Moisture		%	11.0	11	.5	5		5	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

QUALIFIERS

Project: LAE001 Pace Project No.: 50157354

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

ANALYTE QUALIFIERS

- C0 Result confirmed by second analysis.
- C9 Common Laboratory Contaminant.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.
- RS The RPD value in one of the constituent analytes was outside the control limits.
- S1 Surrogate recovery outside laboratory control limits (confirmed by re-analysis).
- S8 Surrogate recovery outside laboratory control limits due to matrix interferences (confirmed by similar results from sample re-extraction and/or re-analysis)

METHOD CROSS REFERENCE TABLE

Project: LAE001 Pace Project No.: 50157354

Preparation Method Parameter Matrix Analytical Method 6010 MET ICP Solid SW-846 6010B SW-846 3050B Solid SW-846 7471A 7471 Mercury SW-846 7471A 8082 GCS PCB Solids Solid SW-846 8082A SW-846 3546 8260 MSV 5030 Low Level Solid SW-846 8260A SW-846 5030A 8260 MSV 5035A VOA Solid SW-846 8260C SW-846 5035A 8270 MSSV SHORT LIST Solid SW-846 8270C SW-846 3546 MICROWAVE

Pace Analytical Services, LLC 7726 Moller Road Indianapolis, IN 46268 (317)228-3100

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project:LAE001Pace Project No.:50157354

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
50157354001	LAE001:BH-5:S0851005	EPA 3546	358147	EPA 8082	358297
50157354002	LAE001:BH-7:S035055	EPA 3546	358147	EPA 8082	358297
50157354001	LAE001:BH-5:S0851005	EPA 3050	358161	EPA 6010	358845
50157354002	LAE001:BH-7:S035055	EPA 3050	358161	EPA 6010	358845
50157354001	LAE001:BH-5:S0851005	EPA 7471	358125	EPA 7471	358173
50157354002	LAE001:BH-7:S035055	EPA 7471	358125	EPA 7471	358173
50157354001	LAE001:BH-5:S0851005	EPA 3546	358149	EPA 8270	358417
50157354002	LAE001:BH-7:S035055	EPA 3546	358149	EPA 8270	358417
50157354001	LAE001:BH-5:S0851005	EPA 8260	358363		
50157354002	LAE001:BH-7:S035055	EPA 8260	358363		
50157354003	LAE001:Trip:W101916	EPA 8260	358124		
50157354001	LAE001:BH-5:S0851005	SM 2540G	358185		
50157354002	LAE001:BH-7:S035055	SM 2540G	358185		

			СНА	CHAIN OF CUSTODY RECORD	ORD				MANN	14	PAGE <u> </u> OF NO. 0989
H Mason OH Mason OH Mason OH Constitution of 4770 Dute Dr.	—	_	St. Clairsville, OH	Campbells Run Bushess Center		ž	REPORT TO:	1	Shuwn mebee	166	
Num OH AFOAD	20		2nd Floor St Chimelin OH 13060	300 Business Center Dr., Sune 320 Dimmer DA 15005					ANAI VCEC		
илацидны, и тасти P: (600) 241-7173 P: (613) 466-9877	P. (419) 252-3949 P. (419) 385-2018		P. (800) 241-7173	P: (412) 448-0315	PRESEF	PRESERVATIVES	A/	/ A / A			
Client / FEO CO.	SAMPLE	SAMPLE MATRIX	and a	PRESERVATIVES	METALS		/ /	/	/ / /		
166BR	AA-MBIENT AIR C-ASBESTOS D-SEDIMENT G-GROUNDWATF		A-Cool only, <4 deg. C B-HNO ₅ pH<2 C-H ₂ SO ₄ pH<2 D-NaOH pH>12	H-EDTA H5mi 1:1 HCL J-none K-Stored in dark	N - Not fillered F45u- fillered with 0.45 mitron			State u			
MERECRI	L-LEACHAT P-PRODUCI 8-SOIL			L-NH4CI M-Methanol S-Sodium	F&u-fütered with 5 micron		~	2 09		<u> </u>	
Purchase Order #	Sessoli Gas se subslab Vapor Wavater X-concrete					570	-70	58	<u> </u>		/ pistsigc
PROJECT NO.: SAMPLE LOCATION : SAMPLE MATRIX & ID			SAMPLE TYPE (discrete, composite)	COLLECTION DATE/TIME	METALS	1	10	>~	/	<u> </u>	COMMENTS
CAEOOI : BH-5 : 5085100	1005 3		Q	roliglie/ju: yo		X	1				001
LAECO1: 84-7 : 5035 055	:05 S		A	10/19/16/12:43	-	X	× ×	X		•	2005
LAGODI THID WID1916	1916 3		D	10/14/ke/		X				`	-003
				/	,		· · ·				
			• •••	/							
•••	-										
••				<							
				/							
				~							
•••							-				
•••	-										
•••							i		-		
RELYNQUISHED BY: DATE: 10 - 24	917		PACF	рате 10/24 TIME 144	116	Deliver To:		2000	Andlehial		
DATE: LO	2116	KED BY: /	1 00.0	DATE: 10/24	116	Method of Delivery. Airbill Number	Delivery. ber	20	2	R	
UISHEIGBY: FANSE	RECEIV			DATE USSIVE		Regulatory Program:	Program: imite:	2 2 1			
COOLER TEMPERATURE		NOES	WHITE	SE (MUS	D WITH REPORT		NOTES:				
• AS RECEIVED (.1 • •	°د کرید		YELLOW	-LAB USE -RETAINED BY HULL		F	TURN AROUND TIME:	ND TIME:	Sta	Standerd	1 DAYS
)									-		

Sam	ple Condition	Upon Receipt		
Pace Analytical Client Name	· 16.		Project # 5	154204
Client Name	. nuc			
Courier: Fed Ex UPS USPS Client	t Commercial	Pace Other		
Tracking #: <u>7844 4171 2543</u>				
Custody Seal on Cooler/Box Present:	🗌 no 🛛 Sea	ls intact: yes	no	Date/Time 5035A kits placed in freezer
Packing Material: Bubble Wrap	Bags None	Other	·	15/05/16 1117
Thermometer 123456 KBCDEF	Type of Ice:	et Blue None [Samples on ice, cool	ing process has begun
Cooler Temperature <u><i>l-1/1-1</i></u>	Ice Visible in S	ample Containers:	yes no	·
(Initial/Corrected)		Comments:		of person examining
Are samples from West Virginia?		1.	contents:	2,5/25/14
Document any containers out of temp.	LIYES LATNO .	1.		
Chain of Custody Present:	Tres INO IN	A 2.		
Chain of Custody Filled Out:		A 3.		
Chain of Custody Relinquished:	ÆYes □No □N	A 4.		
Sampler Name & Signature on COC:		A 5.		
Short Hold Time Analysis (<72hr):	Yes ANO ON	A 6.		
Rush Turn Around Time Requested:	□Yes □No □N	A 7.		
Containers Intact:	Pres DNo DN	/A 8.	8 19 19	
Sample Labels match COC:	Pryes DNo DN	A 9.		_
-Includes date/time/ID/Analysis				
All containers needing acid/base pres. have been checked?	🛛 Yes 🔎 No 🖉 N	A 10 (Circle) HNO3	H2SO4 NaOl	H NaOH/ZnAc
exceptions: VOA, coliform, TOC, O&G		-		
All containers needing preservation are found to be in comrecommendation (<2 , >9 , >12) unless otherwise noted.	pliance with EPA			
Residual Chlorine Check (SVOC 625 Pest/PCB 608)	11. Present	Absent	
Residual Chlorine Check (Total/Amenable/Free Cya	nide)	12. Present	Absent	
Headspace in VOA Vials (>6mm):		/A 13		
Headspace Wisconsin Sulfide	□Yes □No	14		
Trip Blank Present:		/A 15		
Trip Blank Custody Seals Present	Yes INO DN	/A		
Project Manager Review		144 144		
Samples Arrived within Hold Time:		/A 15.		<u> </u>
Sufficient Volume:		/A 16.		
Correct Containers Used:		/A 17.		
Client Notification/ Resolution:			Field Data Required	? Y / N
Person Contacted:	Dat	e/Time:	· · · ·	
Comments/ Resolution:				
	<u></u>	<u> </u>		
				<u> </u>
■ ★ 179 ★ 5 m = 1 ± 1	•		· · · · · · · · · · · · · · · · · · ·	
	41			l l
Project Manager Review:	JAA	10	Date:	0/26/16
· · · · · · · · · · · · · · · · · · ·		J		

	Ŕ						-			•							.1		
CLIEN				1												<u>}</u> (
coc PAGE 1 of 1 coc ID# 0 9 89	1 of L		S		Project # _	U) # to	SO157354	7351								OAMIS	/ater/Ot		
	не Не	_	Kii					•								trix :			
sample Line Item	Ö Ö AG1U WGFU AG0U R 4/6 BP2N	-U AGOU R	4/6 BP2	N BP2U	J BP2S		BP3N BP3U BP3S AG3S	23S AG3	S AG1H	H BP3C		BP1U SP5T	r AG2U			вМ	os)	pH <2 pH >9 pH>12	٤Į
-	m	-														8	L		
2	n																•		
3			3													-			
4																			T
ъ С		•••••			-														
9									-	-									Π
7						•													Τ
8																			
6																			Τ
10	5 U																		Ι
11													_						
12																			
	Container Codes																		ſ
DG9H	40mL HCL amber voa vial	· voa vial	AGO	100m U	IL unpre	served :	AG0U 100mL unpreserved amber glass	S	BP1N	- 1	1 liter HNO3 plastic	Blastic			DG9P		40mL TSP amber vial	al	Τ
AG1U	1liter unpreserved amber glass	1 amber glas	ss AG1H		r HCL a	1 liter HCL amber glass	ass		BP1S	I	1 liter H2SO4 plastic	14 plasti	0		DG9S		40mL H2SO4 amber vial	ir vial	Τ
WGFU	4oz clear soil jar		AG1S		IL H2SO	1 liter H2SO4 amber glass	glass		BP1U		1 liter unpreserved plastic	served	plastic		DG9T		40mL Na Thio amber vial	er vial	Τ
Ľ	terra core kit		AG1T		r Na Th	iosulfate	1 liter Na Thiosulfate amber glass	SS	BP1Z		1 liter NaOH, Zn, Ac	I, Zn, A		+	DG9U	40mL un	40mL unpreserved amber vial	amber via	_l
BP2N	500mL HNO3 plastic	stic	AG2N		UL HNO	500mL HNO3 amber glass	r glass		BP2A		nL NaO	H, Asc	500mL NaOH, Asc Acid plastic	stic	SP5T	120mL C	120mL Coliform Na Thiosulfate	Thiosulfat	ø
BP2U	500mL unpreserved plastic	ed plastic	AG2S		nL H2S(500mL H2SO4 amber glass	er glass		BP20		500mL NaOH plastic	H plast	J		JGFU	4oz unpr	JGFU 4oz unpreserved amber wide	nber wide	
BP2S	500mL H2SO4 plastic	astic	AG2U		nL unpr	served	500mL unpreserved amber glass	ŝS	BP2Z		500mL NaOH, Zn Ac	H, Zn A	ç		S	Summa Can	Can		
BP3N	250mL HNO3 plastic	stic	AG3U		nL unpr	served	250mL unpreserved amber glass	SS	4	AF Air Filter	llter				VG9H	40mL HC	VG9H 40mL HCL clear vial		
BP3U	250mL unpreserved plastic	ed plastic	BG1H		IL HCL C	1 liter HCL clear glass	SS		BP3C	3C 250r	250mL NaOH plastic	H plast	O		VG9T	40mL Na	40mL. Na Thio. clear vial	r vial	
BP3S		astic	BG1S		IL H2SO	1 liter H2SO4 clear glass	ylass		BP3Z	3Z 2501	nL NaC	H, Zn ⊿	250mL NaOH, Zn Ac plastic		VG9U	40mL un	VG9U 40mL unpreserved clear vial	clear vial	Τ
AG3S	1	ass amber	BG1T		r Na Th	iosulfate	1 liter Na Thiosulfate clear glass	S		C Air C	Air Cassettes	S			VSG	Headspa	VSG Headspace septa vial & HCL	ial & HCL	
AG1S		ber glass	BG1U		r unpres	1 liter unpreserved glass	lass		ğ	3B 40m	L Na Bi	sulfate	DG9B 40mL Na Bisulfate amber vial		VGFX	4oz wide	WGFX 4oz wide jar w/hexane wipe	ine wipe	
BP1U		d plastic	BP	1A 1 lite	r NaOH	, Asc Ac	BP1A 1 liter NaOH, Asc Acid plastic		DG9	DG9M 40mL MeOH clear vial	L MeOt	1 clear 1	/ial		ZPLC	ZPLC Ziploc Bag	ag		٦

Sample Container Count

F-IN-Q-270-rev.06,11May2015

Page 40 of 40

APPENDIX E

Report of Geophysical Surveys (prepared by Grumman Exploration, Inc.; dated October 28, 2016)

Grumman Exploration, Inc. 2309 Dorset Road Columbus, Ohio 43221 (614) 488-7860 tel <u>www.GrummanExploration.com</u>

Non-destructive Subsurface Exploration Near-surface Geophysics

October 28, 2016

Shawn McGee Hull & Associates, Inc. 4 Hemisphere Way, Bedford, OH 44146

RE: Report of Geophysical Surveys at the LEEDCo/CPP Icebreaker Wind Demonstration Project, 2551 N. Marginal Road, Cleveland, Ohio; GEI Project No. 01-36087

Dear Shawn:

This letter-report briefly summarizes the results and interpretations regarding the geophysical surveys performed at the LEEDCo/CPP project site. Anomalous strong EM responses were observed in a few locations within the investigation areas. These responses are believed to indicate buried metallic structures, demolition debris and/or possibly industrial fill, such as slag. The GPR results show strong reflective targets in the switchgear area what may indicate reinforced concrete structures. Further invasive exploration would be required to observe actual subsurface target conditions at this and other EM anomaly locations. Obstructions and significant sources of interference were present throughout both areas.

Project Overview

Grumman Exploration, Inc. conducted Electromagnetic (EM) induction profiling and Ground-penetrating radar (GPR) surveys on October 7, 2014 at the above referenced former Cleveland Public Power (CPP) generating station. The investigation areas consisted of two sub parcels located between the former generating station and Lake Erie, and included:

- Southwest: Proposed Switchgear Yard Area
- Northeast: Proposed HDD and 138 kV Interconnect Areas.

The investigation areas are located within an active public utility service yard area. Compacted gravel covers much of the ground surface. A 202-ft by 43-ft concrete

containment slab is located in the center of the yard. There were many obstructions and sources of electrical interference within both investigation areas, including: electrical transformers, utility boxes, debris piles, concrete vaults, a dumpster, soil and fill piles, various stored equipment, debris piles, steel superstructure and foundations related to an overhead coal loading chute and conveyors, a brick electrical building and loading dock, and areas with dense vegetation. Additionally, trial directional borings were being conducted in the HDD/Interconnect area at the same time as the geophysical investigation. Note that the originally intended geophysical investigation areas were larger than what was actually surveyed; The extensive obstructions, site activity and related complications at the time of the investigation limited the feasible survey coverage in both areas.

The yard area has a long history of industrial usage including for coal yard and material storage and as a general service yard. Because of its location on Lake Erie, it is believed that the shallow subsurface consists of 5-ft to 15-ft of fill used to raise the elevation of the former ground or lake bottom surface for the benefit of the generating station operations. According to information available to Hull & Associates, Inc., there is concern that the shallow subsurface may contain any number of complicating conditions such as former concrete structures, rip-rap, piping, foundations, demolition and concrete debris, dredge material, and industrial fill, such as slag and cinders. Little or no information is available regarding former structures, piping or fill conditions within the yard area.

Geophysical surveys using EM and/or GPR were requested to non-destructively assess subsurface conditions within the two yard areas noted above. The presence of obstructions and buried structures could affect the planned wind development project within the yard. The designated investigation areas covered the open and accessible regions within the two parcels noted above. A gridded survey approach was used over both areas, although significant obstructions and electrical interferences sources complicated the geophysical surveys. Completely inaccessible zones or areas with excessive interference included the region below the overhead coal conveyor and associated superstructure, a large portion of the concrete containment slab, and along the north, northeast and northwest edges of the yard where several large soil/fill piles and concrete vaults were located. Informal EM and GPR scans were also performed in the vicinity of a trailer within the substation west of the yard area. A narrow area outside of the site fence along the Lake Erie frontage could not be scanned because of dense vegetation, the limited working area, the extremely rough and hazardous ground surface conditions and the unlikely usefulness of the geophysical results over this area given these conditions.

Field Procedures

A single survey grid was established over the accessible, open areas spanning both investigation areas. The southernmost corner of the concrete containment slab was used as the survey grid origin (See Figures 1 and 2) and the south edge of the concrete pad was used

Grumman Exploration, Inc. 2309 Dorset Road, Columbus, Ohio 43221 (614) 488-7860 tel www.GrummanExploration.com

as the grid baseline. Note that project north differs from compass north by several tens of degrees. The field grid was established using fiberglass measuring tapes, metal pin flags and marking paint. Following the field survey, the positions of designated field grid and other site features were measured using a Trimble GeoXH hand-held GPS system with Zephyr antenna. An overlay of the Ohio-North State Plane geospatial grid is also included on Figures 1 and 2.

The survey instrumentation consisted of a GSSI GEM-300 multi-frequency electromagnetic (EM) induction profiling system. Vertical dipole quadrature phase (proportional to induction conductivity) and in-phase (metal-sensitive) measurements using a single coil alignment at three frequencies (15,030Hz and 9,810 Hz [similar to that used by the Geonics, Ltd. EM-31] and 4,410 Hz) were recorded electronically at each grid location. The gridded EM survey was limited to the open, accessible portions of the southern, eastern and western regions of the site. The transect spacing was 5-ft and the in-line measurement interval was ~2.2-ft. A "continuous survey" mode was used. In this survey mode, data are acquired at a fixed time interval while the operator walks along a survey line at a steady pace. Regularly spaced reference marks were incorporated into the data during acquisition to "fix" the measurement locations. Subsequently a computer program was used to adjust the station positions with respect to the coordinate system being used.

Following the survey, the data were downloaded onto a laptop computer and prepared for contouring. The EM data were contoured using a commercially available program (Surfer, Golden Software, Inc.). The conductivity readings are reported as relative units in terms of milli-Siemens/meter (mS/m) and the in-phase in parts-per-million (ppm). The conductivity measurements are considered relative since no actual calibration location was available on site to verify these measurements. The in-phase response is also a relative measurement and generally should be close to zero when not in the vicinity of highly conductive or metallic objects.

GPR scans were also performed in targeted areas of the site, and mainly over anomalous EM targets and in the northern sector of the east parcel. The GPR system used was a GSSI SIR-3000 in conjunction with a 270 MHz dipole antenna. This antenna was selected for its greater depth penetration compared to that of the 400 MHz antenna. The first field task involved equipment setup and the completion of several test scans to observe the GPR response and to adjust the data acquisition parameters. A survey wheel was used to acquire distance-based data at the density of approximately 10.0 GPR traces per foot. GPR scans were performed along 5-ft spaced east-west and north-south transects in both investigation areas as access and ground surface conditions allowed. The time window used was 80 nanoseconds (ns) and band-pass filters were applied to reduce extraneous interference. Preliminary interpretations regarding the possible presence of excavations and anomalous buried structures and objects were made as the GPR data were acquired. The data were

recorded electronically on an internal hard disk in the field and later transferred to a desktop PC computer and computer workstation for subsequent processing, display and analysis.

The correspondence between 2-way travel time and actual subsurface depth is determined by the dielectric permittivity of the subsurface. Low permittivity materials allow reduced signal attenuation and greater depth penetration, and vice versa. However, because the permittivity of the subsurface fill materials on site could not be estimated, no depth correspondence can be provided on the GPR records. Consequently, the vertical axis on the GPR records (Figure 3 and 4) are shown in terms of 2-way travel time. In general, the maximum attainable exploration depth at this site is believed to have been on the order of 4-ft to 5-ft, although the actual signal penetration could be greater or lower depending on the actual electrical properties of the fill on site.

Results and Interpretations

Figures 1 and 2 show the contoured EM conductivity and in-phase (metal sensitive) survey results superimposed on a site diagram, respectively. Figures 3 and 4 presents selected GPR transects from the two investigation areas that illustrate various subsurface targets and conditions of interest.

In general, the EM and GPR results show only a handful of clearly anomalous responses in the accessible areas that could be scanned. No clear indication of buried piping, foundations or large buried building structures were observed in either the EM or GPR responses. This does not imply that no buried structures are present – for GPR, it is possible that buried structures, such as pipes, are present beyond the maximum attainable exploration depth. The EM results were largely inconclusive in the close proximity (<8-ft +/-) to large metallic objects and structures, including metal transformers, equipment and debris. As a result, the lateral extent of some of the observed strong EM responses was difficult to map, particularly below the concrete pad and in the vicinity of the overhead conveyor/coal chute area. The exploration depth for the EM induction profiler is believed to be on the order of 15-ft, however, the EM results cannot provide any depth information about the anomalous targets that were detected.

A moderate depth reflective surface was detected on many of the GPR scans in both investigation areas (e.g. Figure 3). This intermediate depth surface may represent a former ground, pavement or fill surface below several feet of fill. The actual depth to this surface is not known, although it would appear to range from 1-ft to 3-ft below the existing ground level. The GPR scans showed moderate to strong signal attenuation effects, which is consistent with the presence of highly conductive fill such as wet clay, slag, cinders, elevated salt content, rubble debris etc. With the elevated GPR signal attenuation comes reduced signal penetration into the subsurface. The maximum GPR exploration depth is believed to be in the range of 4-ft to 5-ft at this site, and could have been less depending on actual ground

surface and fill conditions. As such, it is possible that some targets of interest, including pipes, foundations, former structures and other conditions of interest may be undetectable to GPR if they are buried beyond the attainable exploration depth at this site.

Specific targets or conditions of interest in the two investigation areas are summarized in the following paragraphs.

Southwest: Switchgear Yard Area

Anomalous EM in-phase and GPR responses were noted in three general locations within the switchgear yard area, including:

- <u>0-ft to 15-ft N/ 20-ft to 30-ft+ W</u>: west of concrete pad (Figure 2). Possible interpretations of this zone include a more deeply buried reinforced concrete pad, metal equipment or a concentration of metallic debris. There was no corresponding EM conductivity response over this target which may indicate that the target is metallic. GPR scans over the EM anomaly show no clear indication of a buried structure, although the cause of the EM response may be too deep to detect using GPR.
- <u>20-ft to 45-ft W/ 5-ft to 40-ft N</u>: west-central end of the concrete containment pad Erratic strong EM in-phase responses were observed between the obstructions on the pad. Some of the strong EM responses may be interference effects caused by nearby metallic obstructions. GPR scans over the southern portion of this area (Figure 3) show strong reflective objects or structures buried a few feet below the slab surface. It is not clear what the reflective objects are and the lateral extent of this area and outline of the targets could not be determined because of the limited working area. A possible explanation is that the targets are large fragments of reinforced concrete or stone (e.g. rip-rap). Deeper, chaotic GPR reflections were observed over the reflective targets which may indicate coarse demolition debris.
- <u>10-ft to 50-ft E/ 25-ft to 40-ft S</u>: west of brick building Anomalous strong reflective surfaces were observed in the shallow subsurface region west of the brick building. No corresponding EM responses were noted over this region. The reflective targets appears to be on the order of 1-ft to 2-ft below the ground surface. These reflective surfaces may indicate large fragments of concrete debris, former foundations, former support structures/flooring, or large pieces of stone.

Further invasive exploration in these locations would be required to document the cause(s) of the anomalous responses.

Northeast: HDD and 138 kV Interconnect Area

Relatively few anomalous EM or GPR responses were observed within the HDD & Interconnect areas, although large portions of this area were obstructed and could not be scanned. The significant observations from this area include:

140-ft to 175-ft E/10-ft to 20-ft S: Vicinity of dumpster, south of containment pad

An anomalous strong EM in-phase response was observed in the driveway area. No corresponding EM conductivity response was observed over this area. Possible explanations for this response include a more deeply buried reinforced concrete pad or other metallic structure. It is also considered possible that the response is an interference effect caused by the nearby dumpster and other metallic equipment. No indication of a reflective target was noted on GPR scans over this target (Figure 4).

180-ft to 250-ft E/35-ft to 90-ft N: far northeast (northern) corner of service yard

Strong EM conductivity and strong, negative EM in-phase responses were observed across the northeast corner of the HDD/Interconnect area. A strong negative EM in-phase response is often observed over regions with deeper, highly conductive industrial fill such as slag, cinders, or fill material with elevated iron or salt content. These types of materials are commonly observed throughout the Cleveland metro area. The increasingly negative response moving to the northeast may indicate that the highly conductive fill increases in thickness or concentration moving toward Lake Erie. No anomalous GPR responses were noted over this area, however the possible highly conductive fill would tend to severely reduce the effective GPR exploration depth over this area.

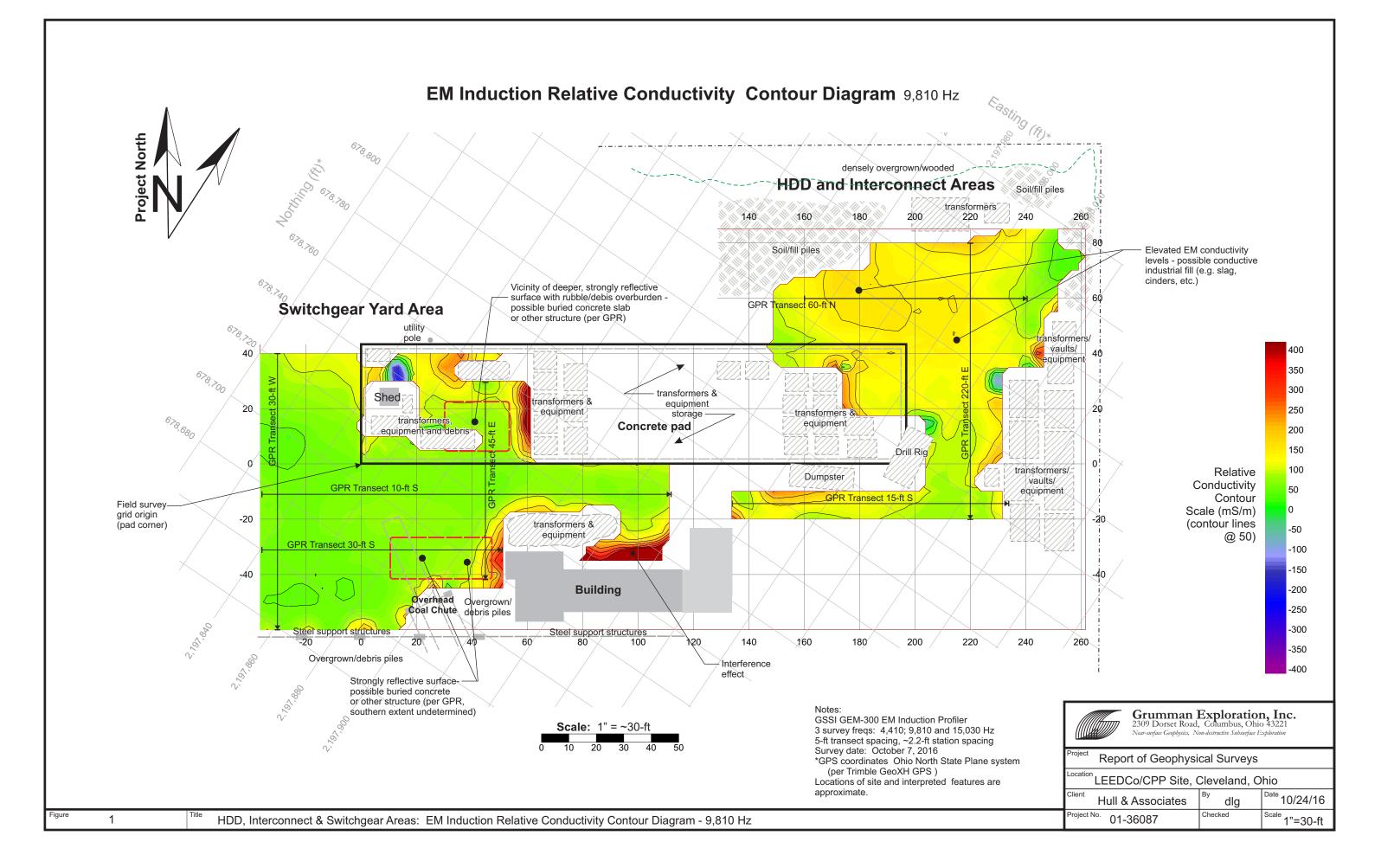
General Qualifications

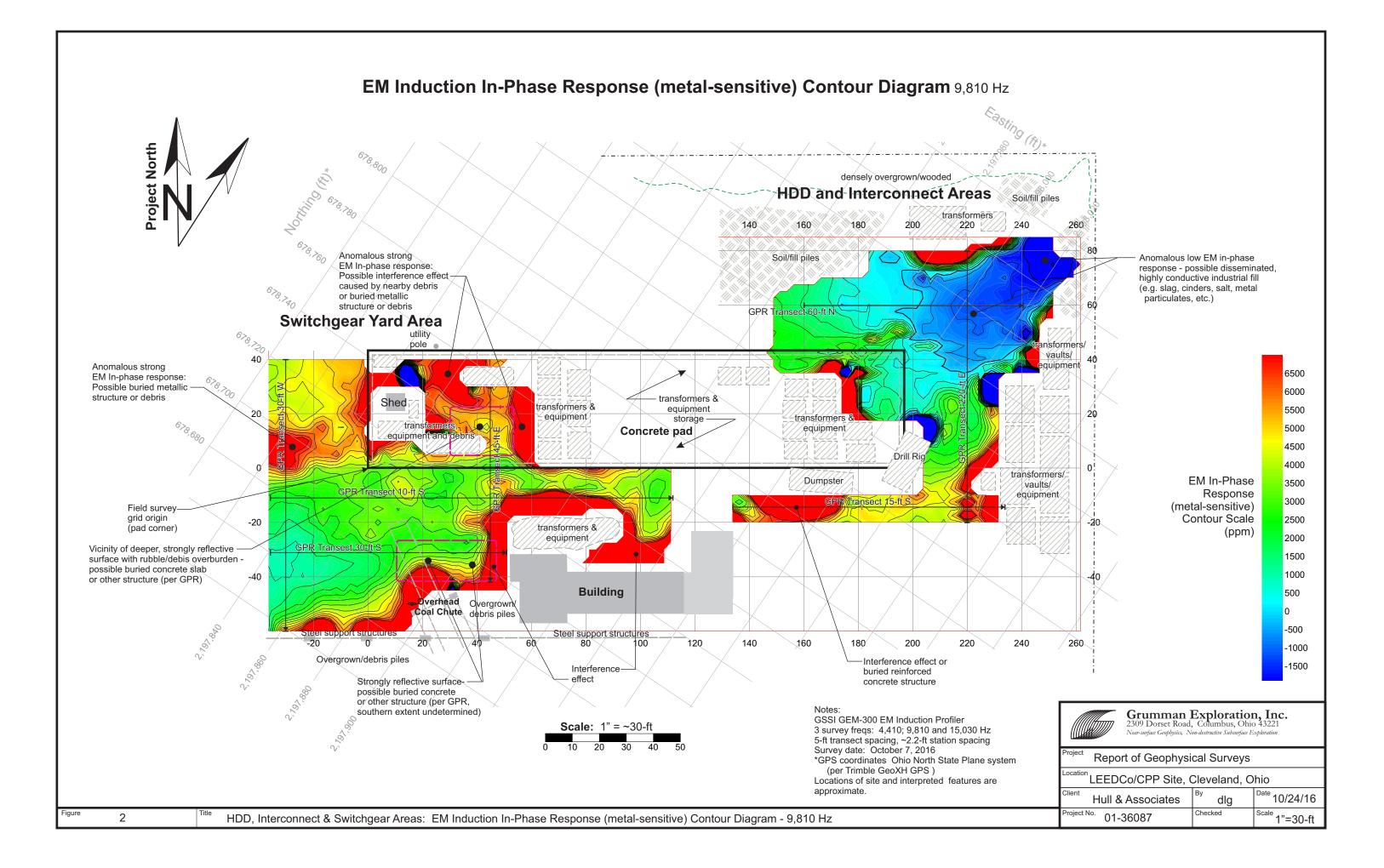
The use of geophysical exploration methods, such as those described herein, should not be considered a substitute for invasive subsurface exploration such as drilling, digging or excavation. The EM and GPR data are interpreted. No warranty or statement of fact regarding actual subsurface conditions is contained herein. If questions or uncertainties exist regarding the interpreted presence or absence of subsurface conditions based on the geophysical data obtained from this site, it is recommended that supplemental subsurface explorations, such as drilling or test-pit explorations, be conducted if possible to further characterize and document actual subsurface conditions. No interpretation of subsurface conditions can be provided for obstructed or inaccessible areas on site.

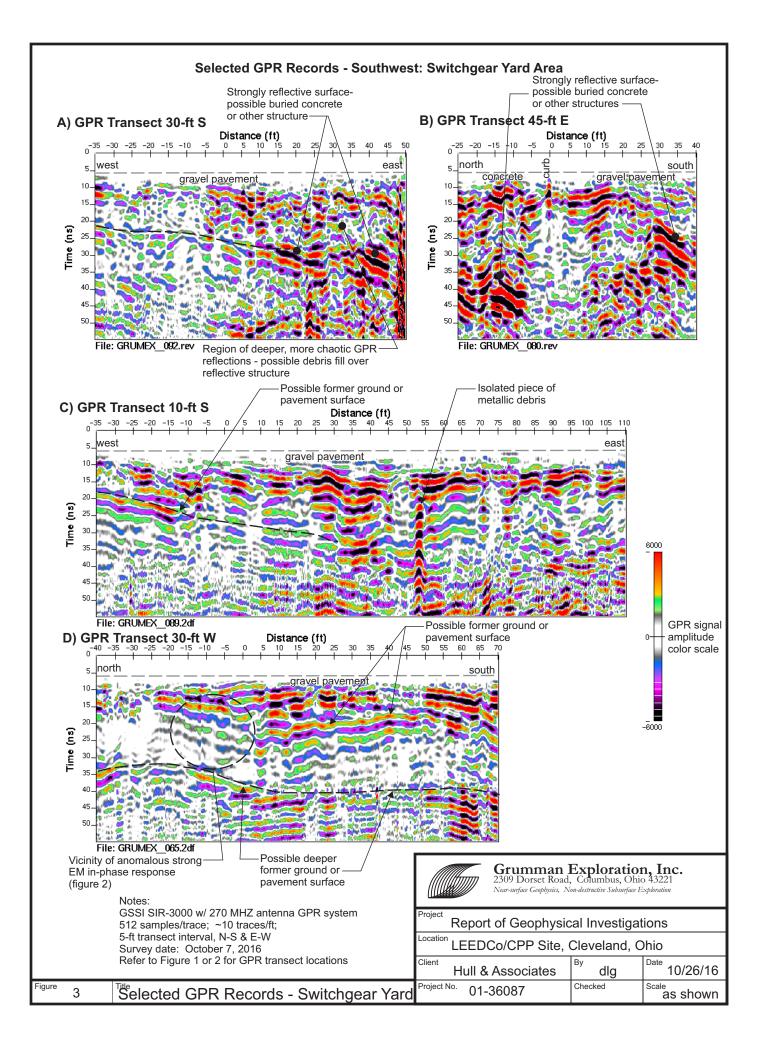
Grumman Exploration, Inc. has appreciated this opportunity to be of service again to Hull & Associates, Inc. If you have any questions or comments regarding this report, please feel free to contact us.

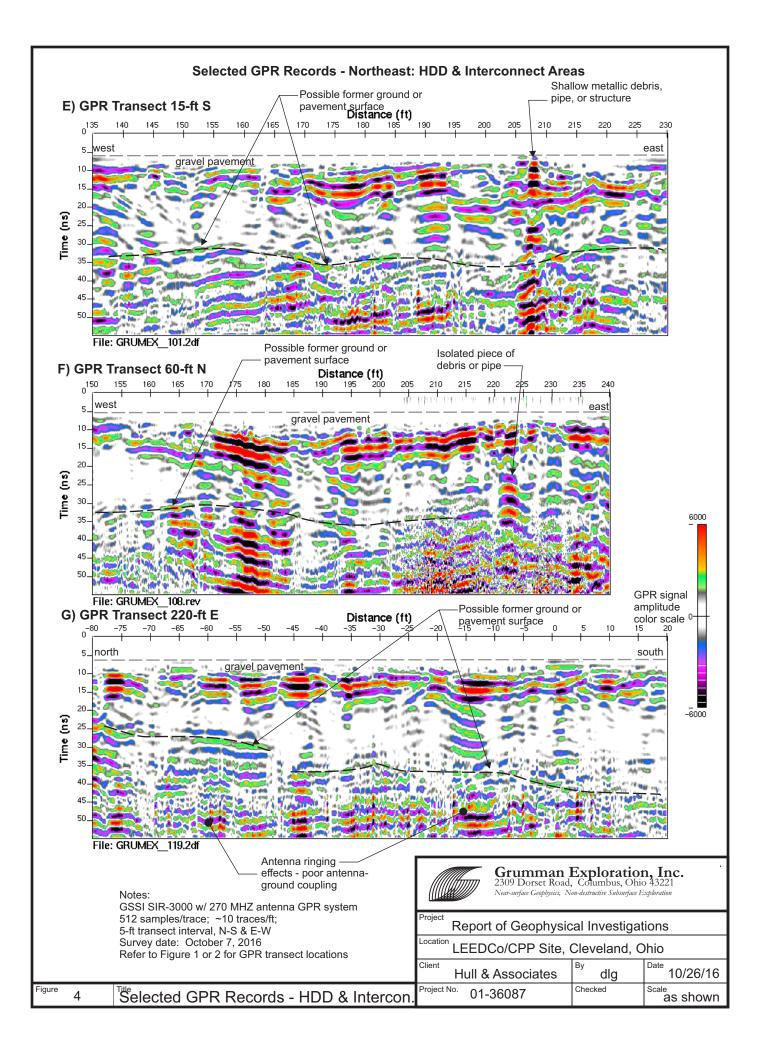
Sincerely,

Grumman Exploration, Inc.


former


David L. Grumman, Jr. President/Geophysicist


Attachments: Figures 1-4 Overview and Limitations of EM and GPR



Grumman Exploration, Inc. 2309 Dorset Road, Columbus, Ohio 43221 (614) 488-7860 tel www.GrummanExploration.com

