Enabling practical & affordable hydrogen at scale(s)

Guillaume Petitpas, Ph.D.

How will H₂ scale up ?

1 hose, 200 kgH_2 /day

8 hoses, 4000 to 6000 kgH₂/day

Today

Today's standard: 700 bar refueling with pre-cooling

Does "multiplying" this design for large stations make sense ?

Different options exist for H₂ infrastructure

Different options exist for H₂ infrastructure

Different options exist for H₂ infrastructure

Liquid hydrogen (LH₂) has many benefits, especially at large scale(s)

- High density LH₂ allows minimum volume & mass, thus minimum storage & transmission cost
- High capacity per truck & short transfer times facilitates delivery logistics/scheduling
- Low potential burst energy: 20 K and <6 bar vs. 300 K and >200 bar
- LH₂ pumps provide high throughputs at low dispensing costs
- High density of LH₂ can be transferred to **compact onboard solutions** (cryo/cold)

Comparison LH₂ vs. gaseous pathway: refueling station CAPEX

Comparison with 700 bar

- Station designed for 80 trucks or buses per day, 50 kg capacity each (**4,000 kg/day**)
- Cost projections from ANL (HDSAM)
- Centralized production of H₂
- Assumes high volume production
- Pipeline has high transmission costs (\$500k-\$1m per mile)
- Direct fill: 16 compressors have same throughput as 5 pumps

Comparison LH₂ vs. gaseous pathway: refueling station CAPEX

Comparison with 350 bar

- Station designed for 80 trucks or buses per day, 50 kg capacity each (**4,000 kg/day**)
- Cost projections from ANL (HDSAM)
- Centralized production of H₂
- Assumes high volume production
- Pipeline has high transmission costs (\$500k-\$1m per mile)
- Direct fill: 16 compressors have same throughput as 5 pumps

Comparison LH₂ vs. gaseous pathway: refueling station **OPEX**

- Station designed for 80 trucks or buses per day, 50 kg capacity each (4,000 kg/day)
- Land: \$5k/month
- Electricity: \$0.15/kWh
- O&M: 3% of CAPEX/year
- Wage: \$60k/year
- Boil-off: 1%/kgH₂, \$5/kgH₂
- Different efficiencies: 4 kWh_e/kgH₂ for compressors vs. 0.25 to 0.5 kWh_e/kgH₂ for LH₂ pumps...

Comparison LH₂ vs. gaseous pathway: refueling station cash flow

- Station designed for 80 trucks or buses per day, 50 kg capacity each (4,000 kg/day)
- Revenue: \$1/kgH₂, 5 days/week: ~ \$1m/year
- Both options are <u>LH₂ delivered</u> (lowest CAPEX)
- Liquid pump solution breaks even after 7-8 yrs
- Under those assumptions, compressor solution does not break even (revenue~OPEX...)

Beyond LH₂ at the station....

- Using a LH₂ pump offers drastic CAPEX and OPEX advantages at the station: *at least* 50% reduction over gaseous
- R&D on LH₂ supply chain up to the station is on-going and mature (Linde AG, ACD, Praxair....)
 - Cryo-compressed (CcH₂) on-board storage offers additional benefits at the station (no need for cascade nor evaporator,
 "unlimited" station availability) and has an even stronger value for the end-user

Is on-board gaseous storage (350 or 700 bar) good enough?

Cryo-compressed H₂ (CcH₂) uses high-pressure to virtually eliminate boil-off, enabling high-density of LH₂

CcH₂'s competitive advantage resides in **high** energy density

- Powertrain=storage + FC/engine
- Takes into account efficiency losses through FC and engine
- Range for all solutions: ~ 300 miles
- Baseline configuration: 85 kW FC, 100 kWh battery, 37.5 kg H₂ capacity
- Black circles are battery technologies

High energy density provides flexibility for design optimization

CcH₂ provides optimal solution for zero-emission transit

Same <u>onboard energy</u> Same fueling speed: 180 miles/hr Same body: carbon fiber

Curb weight Assuming carbon fiber body

CcH₂

22,300 lbs

Powertrain volume

1.4 m³

Power draw Range on grid at station (kW)

3.25

25% more range than battery 40 kg $\rm H_2$

540 miles

350 bar, H₂

23,000 lbs

3.3 m³

526 miles

53

Battery

29,900 lbs

2.5 m³

426 miles

275

CcH₂ provides optimal solution for zero-emission transit

Same <u>volume</u> Same fueling speed: 180 miles/hr Same body: carbon fiber

C_CH₂

Curb weight
Assuming carbon fiber body

23,000 lbs

volume

Powertrain

2.5 m³

Range on grid at station (kW)

3.4

Power draw

350 bar, H₂

22,500 lbs

2.5 m³

350 miles

950 miles

75 kg H₂

53

30 kg H₂

Battery

29,900 lbs

2.5 m³

426 miles

275

CcH₂ provides optimal solution for zero-emission trucking

Same <u>onboard energy & range</u> Same fill time: 300 miles in 15 min	Useful cargo (max: 18 tons)	Powertrain volume	Range d	Power draw on grid @ station (MW)
CCH ₂	17.5 tons	1.7 m ³	300 miles	0.05
350 bar, H ₂ Nikola	17 tons	4 m ³	300 miles	0.8
700 bar, H ₂ Toyota	17 tons	2.6 m ³	300 miles	1.4
Battery Tesla	13 tons	2.2 m ³	300 miles	5 3

CcH₂ provides optimal solution for zero-emission trucking

Same <u>volume</u> Same fill time: 300 miles in 15 min	Useful cargo (max: 18 tons)	Powertrain volume	Range	Power draw on grid at station (MW)
CCH ₂	17.5 tons	2.2 m ³	420 miles	0.05
350 bar, H ₂ Nikola	17 tons	2.2 m ³	150 miles	0.8
700 bar, H ₂ Toyota	17 tons	2.2 m ³	270 miles	5 1.4
Battery Tesla	13 tons	2.2 m ³	300 mile	s 3

CcH₂ provides value to the entire zero-emission supply chain

H2

Refueling station

On-board tank

Truck/Bus

Smaller footprint Integration with FC cooling Lower CAPEX Truck driver Transit Agency

More throughput (= more \$\$\$)

 \checkmark

More throughput (= more \$\$\$) Faster payback (lower CAPEX & OPEX)

More cargo Lower CAPEX & OPEX Compact footprint LLNL has pioneered CcH₂ using a comprehensive approach to improve system density, dormancy, cost, & safety with rapid fueling

15 year R&D at LLNL Now, TRL 6-7 4 patents, 2 patent applications, 1 provisional

Prototype R&D and testing at Lawrence Livermore National Laboratory

Next step: demonstration of CcH₂ onboard a truck, with storage system that meets end-application requirements (C&S, duty cycles..)

Challenges towards commercialization of CcH₂

- **Background IP**: 3 granted patents, 3 provisional, 1 application. Overlap with BMW?
- **Codes and Standards**: CcH2 not recognized as a standard, although mentioned in GTR13. Standards recognition (SAE, ISO...) is generally lengthy...
- Availability: adequate pump has yet to be developed (flow rate, cost, boil-off, outlet temp) to best enable CcH2. No CcH2 manufacturer exists today.
- **Technical**: fatigue life at cryo temperatures could be optimized by developing new tank material. Outgassing of epoxy in VJ may be an issue for light-duty vehicles (no as much for fleets). Solutions exist and could be implemented
- **Manufacturability**: vacuum pumping not ideal for assembly line. IP addressing this issue is being secured. Vacuum pumping of LNG tanks an issue?

CcH₂ enables a cost-effective integrated solution

- → <u>Cheapest</u> and <u>most compact</u> way to ship H₂
- → <u>Cheapest</u> and <u>most compact</u> way to store H₂ in bulk
- → <u>Cheapest</u>, <u>fastest</u> and <u>most efficient</u> way to <u>dispense</u> H₂
- → <u>Cheapest</u> and <u>most compact</u> way to store H₂ on-board vehicles

+ Added BONUS: cryogenic H₂ has many safety features

Lawrence Livermore National Laboratory

The work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344

> LLNL-PRES-742208 Suitable for External Audience (Unlimited)