Infrastructure Challenges in the MD/HD Markets

This document is **PUBLIC**

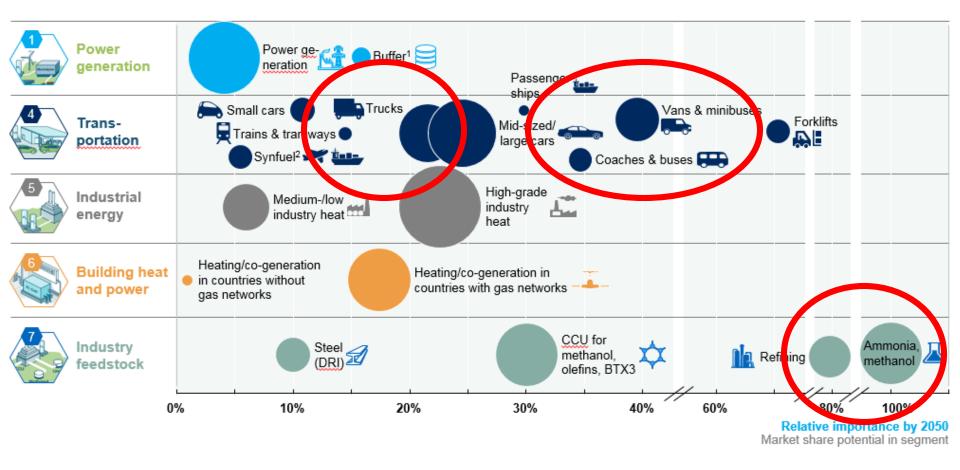
2018

Dave Edwards, PhD

Director, Air Liquide Hydrogen Energy

The world leader in gases, technologies and services for Industry and Health

Part I


What can we expect from the MD/HD market?

What does the market expect from us (as an infrastructure provider)?

What might the refueling infrastructure look like?

Market Potential – 2050 Vision from the Hydrogen Council

This document is **PUBLIC**

Market Requirements – Early Commercial

LD

MD/HD

Vehicle & User Expectations

1-10kg/fillH703-5mins per fillpartial fills common

Station Usage

100+ vehicles/day/position1-4 fueling positions/station1 nozzle/fueling position

30-100kg/fill H35 & H70 & ??? 5-10mins per fill full fills standard

50+ vehicles/day/position2-4 fueling positions/station2 nozzle/fueling position

This document is **PUBLIC**

LD

100-1000kg/day

I gaseous delivery (300-450bar)

Il onsite gaseous production

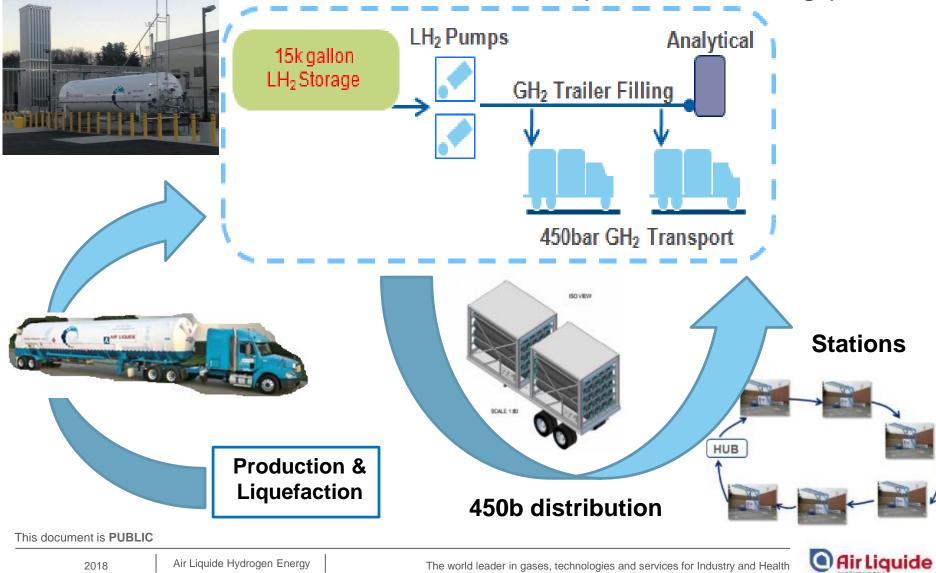
III liquid delivery

MD/HD

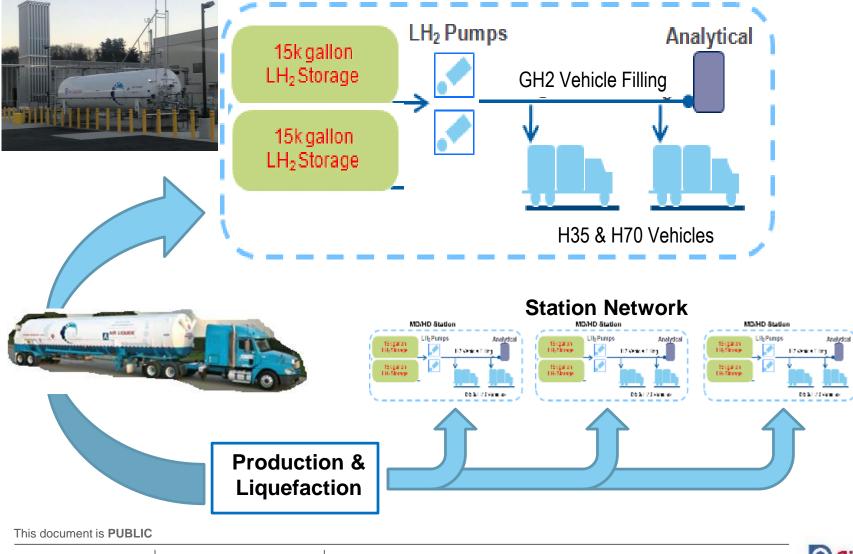
3000-10000kg/day (3-10tpd)

I gaseous delivery

Il onsite gaseous production (onsite liquefaction?)


III liquid delivery

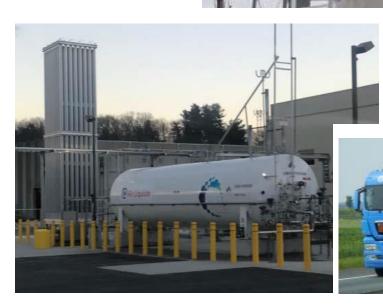
IV pipeline stations


Build from Today's Distribution Model - Hub & Spoke

H2 Distribution Hub (4 tons onsite storage)

Tomorrow's MD/HD Station Model – liquid delivery

MD/HD Station (8 tons onsite storage)



LH2 Storage

Onsite liquid storage 15,000gal typical = 4 tons

Liquid delivery tanker 13,000gal typical = 3.5 tons

NASA Sphere 850,000gal = 230 tons

Roughly to Scale

This document is **PUBLIC**

LIQUIFIED HY DROGEN FLAMMAB LE GAS

H2 LIQUEFACTION

Onsite liquefaction 1-3 tpd

Typical industrial liquefier 10-20 tpd

Future 100+ tpd (???)

This document is **PUBLIC**

2018

The world leader in gases, technologies and services for Industry and Health

Leads us to the industry challenges:

Part II

What are the challenges we expect to face?

This document is **PUBLIC**

Fueling protocols (and lack thereof)

H35 & H70 & ??? Challenges to status quo Other GH2 pressures (onboard) Onboard liquid Cryo-compressed High flow supply

<u>Station design – high flow</u>

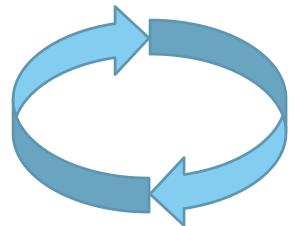
High flow nozzles, multiple & simultaneous fill points Hoses, breakaways, valves, piping Cost drives shift from gas compressors to liquid pumping

Station design - high daily capacity

Shift toward liquid storage & large banks of above ground gaseous Does onsite production drive a need for onsite liquefaction?

Station design - reliability

Customer expectation requires redundancy – does cost drive us to liquid pumping



We MUST learn our LDV lessons

Consider impacts on customers, station designers, vehicle OEMs and supply chain (components and H2)

Process

- **x** develop a vehicle standard design reference
- **x** evaluate how this reference impacts station & vehicle cost
- don't forget the customer/user experience
- **x** adapt vehicle storage to optimize total cost of ownership

This document is **PUBLIC**

Safety offsets and compliance

Drives local permitting Station footprint Limiting station locations and potential public access

OSHA PSM requirements

H2 classified as a highly hazardous chemical Site with >4.5 tons H2 requires operating company to meet PSM req'ts No exceptions for fueling/station operators No similar req't for traditional liquid fuels (at these volumes) Homeland Security issues become relevant at this scale

Industry is challenged to address these

Collaboration is the key

Vehicle OEMs Station Designers Owners/Operators H2 Suppliers Regulatory Agencies Technology Developers DOE

Does this look like LDV did 10-15 years ago?

Thank you

Dave Edwards, PhD Director, Air Liquide Hydrogen Energy

david.edwards@airliquide.com

This document is **PUBLIC**

2018

The world leader in gases, technologies and services for Industry and Health

