

Fleet DNA

Kenneth "Ken" Kelly

Commercial Vehicle Technologies Team

Andrew Kotz, Mike Lammert, Jason Lustbader, Eric Miller, Len Strnad

July 30, 2018

Bringing Fleet Data to Life with Fleet DNA

Objectives:

- Capture and quantify drive cycle and technology variation for the array of <u>medium- and heavy-duty</u> vocations
- Provide a common data storage warehouse for medium- and heavy-duty vehicle data across DOE activities and labs – <u>www.nrel.gov/fleetdna</u>
- Integrate existing DOE tools, models, and analyses to provide data driven decision making capabilities

For Government : Provide in-use data for standard drive cycle development, R&D, tech targets, and rule making

For OEMs: Real-world usage datasets provide concrete examples of customer use profiles

For Fleets: Vocational datasets help illustrate how to maximize return on technology investments

For Funding Agencies: Reveal ways to optimize impact of financial incentive offers

For Researchers: Provides a data source for modeling and simulation

Fleet DNA National Data Coverage

Fleet DNA – Data Coverage

FedEx

Package Delivery

Other Class 8 Trucks

Regional Haul

Mass Transit

Tanker

Utility

Drayage School Bus

85

186

29

25

73

50

120

34

247

82

Days

123,166

5,213

66,732

32,688

1,243

1,067

5,549

2,386

7,970

805

1,466

1,474

Miles

3,069,150

2,107,655

1,779,335

834,764

452,471

377,207

270,367

234,955

122,364

85,574

85,454

70,747

Refuse Pickup

Recent Fuel Cell Application

Collaboration with ANL using Fleet DNA drive cycle data for fuel cell commercial truck component sizing study

Vehicle Class	Vocation/ Description
class 2b, 6000 – 10000 lbs	Small Van
class 3, 10001 – 14000 lbs	Enclosed Van
class 3, 10001 – 14000 lbs	School Bus
class 3, 10001 – 14000 lbs	Service, Utility Truck
class 4, 14001 – 16000 lbs	Walk In, Multi Stop, Step Van
class 5, 16001 – 19500 lbs	Utility, Tow Truck
class 6, 19501 – 26000 lbs	Construction, Dump Truck
class 7, 26001 – 33000 lbs	School Bus
class 8, 33001 lbs or heavier	Construction, Dump Truck
class 8, 33001 lbs or heavier	Line haul
class 8, 33001 lbs or heavier	Refuse, Garbage Pickup, Cab over
class 8, 33001 lbs or heavier	Tractor Trailer

EVS29 Symposium Montréal, Québec, Canada, June 19-22, 2016

Driving an Industry: Medium and Heavy Duty Fuel Cell Electric Truck Component Sizing

J.Marcinkoski¹, R.Vijayagopal², J.Kast¹, A.Duran³

¹Fuel Cell Technologies Office, Department of Energy, USA, Jason.Marcinkoski@ee.doe.gov, James.Kast@ee.doe.gov
²Argonne National Laboratory, 9700 S. Cass Ave, Lemont, IL, USA, ram@anl.gov
³National Renewable Energy Laboratory, USA, Adam.Duran@nrel.gov

FIGURE 1. Fuel Cell and Hydrogen Tank Sizing Result for FCETs

Example: Port Drayage

- 71,243 Miles
- 557 Operating Days
- 30 Unique Vehicles
- 3 Operating Companies
- Port of Long Beach & Port of Los Angeles

CARPAGE COMPANY	TTSI
DHE	le Highway Express

Vocation	Operator	Locations	Weeks	Vehicles	Operating Days
	TTSI Compto	Compton, CA	16	2	166
Port Drayage	Container Freight (California Cartage)	Long Beach, CA	4	14	180
	Dependable Highway Express	Wilmington, CA	4	14	211

10 mi

30 mi

20 mi

40 mi

7

NATIONAL RENEWABLE ENERGY LABORATORY

Applying Fleet DNA – NREL's DRIVE Tool

Drive-cycle Rapid Investigation, Visualization and Evaluation Tool (DRIVE™)

- Created to help fleets and OEMs analyze vehicle usage data for proper vehicle placement, design and testing
- Combines large amounts of user data then filters, creates new cycles & identifies best fitting existing cycle
- Quickly processes and analyzes data :
 - Over 250 metrics
 - Histograms
 - Scatter plots
 - Creates custom cycle
 - Recommends standard cycles

Representative Drive Cycles from Clustering Analysis

Class 8 Drayage Tractor - Diesel vs. EV Efficiency

Class 8 Drayage Tractor EV Power Demand Distribution

Duty Cycle Statistics:	
Driving Days	173
Kinetic Intensity (1/mi)	0.96
Stops per mile	1.18
Avg Acceleration (ft/s ²)	0.84
Average Speed (mph)	27.4

Drive Cycle Analysis Tool - DriveCAT

Objectives:

- Provide a common, publically available, easy to use site for standard and custom drive cycles for mediumand heavy-duty vehicles
- Capture , quantify and compare drive cycle variation across the spectrum of medium- and heavy-duty vocations
- Allows users to download raw time series data of drive cycles for their own use

Drive Cycle Analysis Tool - DriveCAT

Use the Drive Cycle Analysis Tool (DriveCAT) to find drive cycle data for modeling, simulating, and testing vehicle systems and components, or to understand the real-world benefits of drive cycles for specific vehicle applications.

This tool was created by NREL's fleet test and evaluation team, which conducts in-service performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results help vehicle manufacturers fine-tune their designs and help fleet managers select fuel-efficient, low-emission vehicles that meet their needs. Learn more about NREL's fleet test and evaluation research.

Contact Us

Let us know if you have any questions about the data, need assistance, or would like to contribute test cycles. We also welcome your feedback on the tool.

Select a Drive Cycle

▲ DOWNLOAD CSV		Search:						
Cycle	Time (minutes)	Distance (mi)	Max Speed (mph)	Avg Speed (mph)	Avg Driving Speed (mph)	PKE (ft/sec ²)	KI (1/mi)	Stops (#)
CARB HHDDT Composite	60.08	26.05	59.30	26.01	35.59	0.35	0.17	13
CARB HHDDT Creep Segment	4.23	0.12	8.20	1.76	3.00	0.43	24.93	3
CARB HHDDT Cruise Segment	34.73	23.07	59.30	39.86	43.22	0.27	0.12	6
CARB HHDDT Transient Segment	11.13	2.85	47.50	15.36	18.20	0.98	1.38	4
Central Business District - CBD	9.35	2.05	20.00	13.13	15.94	1.12	3.97	14
Manhattan Bus Cycle 10Hz	18.15	2.07	25.40	6.83	10.67	0.19	9.14	20
NREL Baltimore Parcel Delivery	64.23	20.46	61.70	19.11	23.37	1.53	1.33	41

Drive-Cycle Description

A transient, chassis dynamometer test cycle for urban transit buses in Manhattan, New York, with frequent stops and low average speed.

Other Related Resources

 Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles

www.nrel.gov/transportation/drive-cycle-tool

Future Data Science and Machine Learning Opportunities

Discovering Novel Structures

- Characterizing subpopulations
 - kmeans, kmediods, DBSCAN, OPTICS
- Finding representative members
 - Multidimensional depth statistics
- Identifying outliers/anomalies
 - Robust PCA, MDS, Autoencoders
- Exploring lower dimensional structure
 - PCA, t-SNE, ISOMAP
 - Autoencoders

Exploring Known Relationships

- Identifying key variables
 - Regression Models
 - Lasso/Elastic Net
 - Bayesian hierarchical models
- Predicting target output
 - Deep Neural Networks
 - Random Forests
 - Gradient Boosting
- Advanced Use Cases
 - Time Series Forecasting
 - Geospatial
 - Images
 - Text Analysis

Communicating and Visualization

- Lightweight interactive dashboards
- Robust web applications
- Immersive 3D environment for data exploration

Generating Realistic Vehicle Behaviors

- Bayesian hierarchical models
- Variational Auto-encoders
- Generative Adversarial Networks

Example: EPA Phase II GHG and MOVES

Interagency Agreement with EPA

- Vocation vehicle duty-cycle segmentation analysis for Phase II GHG
- National Activity-weighted road grade
- MOVES commercial vehicle activity characterization
- On-road NOx data analysis for future certification

Project Questions:

- Can vocational vehicles be segmented by usage profiles?
- How should road grade be accounted for in EPA HD GHG certification?
- What are work-day idle and speed distributions for vocational vehicles?

Approach

- Fleet DNA, Tom-Tom, MOVES, USGS and EMA
- Eight-dimensional Duty-Cycle Cluster Analysis
 - K-means, hierarchical, K-mediods
- Predictive Modeling
 - Pair-wise Correlation across 8 duty-cycle metrics
- Logistic Regression Model
 - Correlate driveline parameters with cluster membership
- Work day idle, soak, and speed distributions by vocation, class, region

NREL Medium and Heavy-Duty Commercial Vehicle Technologies

For more information: Kenneth Kelly National Renewable Energy Laboratory kenneth.kelly@nrel.gov phone: 303.275.4465

www.nrel.gov

Thank you

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

