Hydrogen uses in ironmaking

Overview of the steel production process

- Steel accounts for 4-5% of the total CO₂ emitted
- Emissions strongly depend on boundary
 - Majority of CO₂ emissions come from power generation, **conversion of iron ore to iron** and re-heating
 - Emissions varies based on how electricity is generated (e.g. coal or nuclear)
- BF-BOF route:
 - \circ 1,600 2,000 kg CO₂/ton HRC
 - Limited potential to reduce further (mature technology)
 - Capture / re-use if possible
- EAF (scrap) route :
 - \circ 500-600 kg CO₂ / ton HRC
 - EAF can be misleading: scrap / OBM were previously converted from iron ore
- EAF+DR route:
 - $\circ~$ 1,100 1,200 kg CO $_2$ / ton HRC for 100% HDRI charge
 - Lowest commercially proven CO₂ emissions from ore

MIDREX Carbon in Iron & Steelmaking

Role of carbon in steelmaking:

- Reduces melting point
- Provides energy (with oxygen)
- Steel products contain carbon as alloying element

→ Carbon-free steelmaking is very unlikely but significant reductions in CO_2 emissions can be achieved with H_2

Source: Durand-Charre M. The Microstructure of Superalloys. 1999

MIDREX

Midrex[®] NG process

- First plant built in 1969
- Over 70 units constructed worldwide
- Over a **billion tons of iron** produced by the MIDREX® process
- Iron ore is reduced to metallic iron in the MIDREX® Shaft Furnace by Hydrogen and CO
- **MIDREX Reformer reducing gas** composition is typically 55% H₂ and 36%CO (ratio ~1.5)
- Midrex plant with SMR has operated since 1989 ~75% hydrogen

Reactions (w/ Hydrogen only)	Heat	Description
$Fe_2O_3 + 3H_2 \leftrightarrow 2Fe + 3H_2O$	Endothermic	Reduction by H ₂
3 Fe + CH₄ ↔ Fe₃C + <mark>2 H₂</mark>	Endothermic	Carburization
3 Fe + CO + H_2 ↔ Fe ₃ C + H_2 O	Exothermic	Carburization

Midrex[®] NG process

- Reducing gases are generated in MIDREX® Reformer.
- Process can use any Natural Gas source regardless of sulfur or heavy hydrocarbon content
- NG consumption ~2.35 Net Gcal / ton DRI

Reactions (w/ Hydrogen only)	Heat	Description
$CH_4 + CO_2 \leftrightarrow 2CO + 2H_2$	Endothermic	CO ₂ reforming
$CH_4 + H_2O \leftrightarrow CO + 3H_2$	Endothermic	H ₂ O reforming
$CH_4 \leftrightarrow C + 2H_2$	Endothermic	Methane cracking
$CO + H_2 \leftrightarrow C + H_2O$	Exothermic	Beggs or Water/carbon shift
$CO + H_2O \leftrightarrow CO_2 + H_2$	Exothermic	Water/gas shift

MIDREX® Plants in North America

Voestalpine (Corpus Christi, Texas USA)

- 2.0 MTPA HBI
- Performance test passed February 19, 2017

Cleveland-Cliffs (Toledo, OH USA)

- 1.6 MTPA HBI
- Completion: 2020

MIDREX[®] NG with H₂

- Up to 30% of NG can be substituted by Hydrogen without changing the process
- Hydrogen may need to be preheated depending on quantities added
- Rough calculations for Cleveland- Cliffs:
 1.6 MTPA (200 ton/h), up to 16,000Nm³/h of NG* can be replaced by 48,000Nm³/h of H₂
- Hydrogen can be increased in the process as it becomes available

* Assumes net heating value 8800 kcal/Nm³

© 2018 Midrex Technologies, Inc. All rights reserved.

MIDREX

MIDREX

$MIDREX^{\mathbb{R}} H_2^{TM}$

- Bustle gas composition is ~90% hydrogen, balance CO, CO₂, H₂O and CH₄ (for 1.4% carbon in DRI)
- Hydrogen consumption is approx. 650 Nm³/t DRI (54kg/t)
- For a Midrex plant the size of Cleveland-Cliffs, that's approx. 130,000Nm³/h of H₂
- ~650MW per Midrex plant (at 200Nm³/h of H₂ per 1MW)

MIDREX

Conclusions

- MIDREX-NG[®] is a proven technology for industrial production of iron, using "fossil" hydrogen at scale. The process can reduce CO_2 emissions by 50%-80% over traditional BF-BOF.
- Direct reduction can be a bridge technology for ironmaking as Hydrogen becomes available at scale
 - $\circ~$ New plants can be built or existing plants can be converted to 100% $\rm H_2$ as the Hydrogen economy evolves
- Green hydrogen production volumes need to increase by 50x 125x to supply one MIDREX® plant
 - Scale up to Demonstration plant will be needed
- Hydrogen production costs must be competitive: steelmaking is a very competitive business with small margins
- European steelmakers are very active