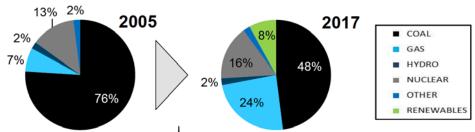
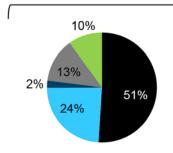


H2@Scale Value Proposition Considerations

Mark Ruth

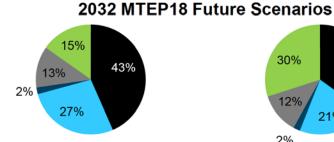
H2@Scale R&D Consortium Kickoff Meeting August 1, 2018

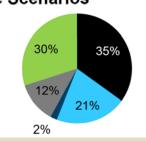

H2@Scale: An Interface Concept



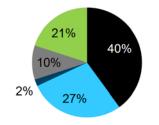
- Hydrogen could be a key energy interface
- Value propositions lie across the make, move, use, and store focus areas
- Key drivers:
 - Markets
 - Linkages
 - Partners

Renewable Electricity Generation is Growing


MISO expects significant growth in renewable and gas-fired generation


Limited Fleet Change

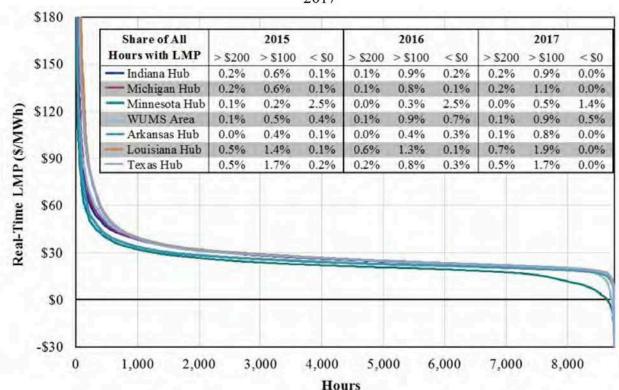
Stalled generation fleet changes. Limited renewables additions driven solely by existing RPS under limited demand growth.


Continued Fleet Change

Continuation of the renewable addition and coal retirement trends of the past decade.

Accelerated Fleet Change

Renewables and demand side technologies added at a rate above historical trends. Fleet changes result in a 20% CO2 emission reduction1.



Distributed & Emerging Tech

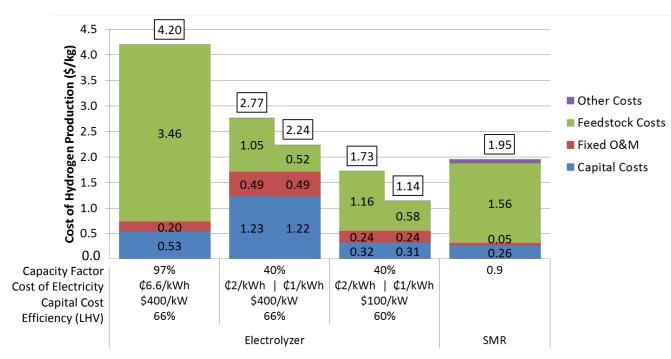
New renewable additions largely distributed and storage resources colocated with largest sites.

Thus the Electricity Market is Changing

Figure A2: Real-Time Energy Price-Duration Curve 2017

- **Hours with** energy at very low and very high prices are increasing
- Other revenue streams (e.g., capacity, services) are becoming more critical
- **Impacting** generators' operations

And Leading to New Opportunities


Overall Summary and Pricing Received

		Technology	# of Bids	Bid MW (ICAP)	# of Projects	Project MW	Average Bid Price	Pricing Units	Comments
Asset Sale or Option		Combine Cycle Gas (CCGT)	7	4,846	4	3,055	\$959.61	\$/kW	
		Combustion Turbine (CT)	1						
		Solar	9	1,374	5	669	\$1,151.01	\$/kW	
		Wind	8	1,807	7	1,607	\$1,457.07	\$/kW	
t Sa		Solar + Storage	4	705	3	465	\$1,182.79	\$/kW	
Asse		Wind + Solar + Storage	1						
		Storage	1						
Purchase Power		Combine Cycle Gas (CCGT)	8	2,715	6	2,415	\$7.86	\$/kW-Mo	+ fuel and variable O&M
		Solar + Storage	7	1,055	5	755	\$5.90	\$/kW-Mo	+ \$35/MWh (Average)
	ŧ	Storage	8	1,055	5	925	\$11.24	\$/kW-Mo	
se P	eme	Solar	26	3,591	16	1,911	\$35.67	\$/MWh	
ırcha	Agreement	Wind	6	788	4	603	\$26.97	\$/MWh	
2		Fossil	3	1,494	2	772	N/A		Structure not amenable to price comparison
		Demand Response	1						
		Total	90	20,585	59	13,247			

- Wind and solar power purchase agreements (PPAs) are key opportunities.
 - **Indiana IRP Averages:**
 - Wind <\$27/MWh
 - Solar <\$36/MWh
- **Expiring PPSs** may have lower prices

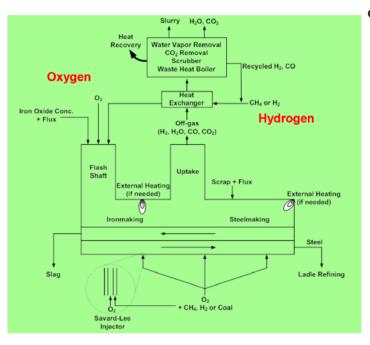
Opportunity: Electrolysis

Potential Levelized Costs of H₂ Production

- Electrolytic hydrogen has the potential to be cost competitive
- Need H2 market access
- Business opportunities:
 - H₂ production
 - equipment and supply chain

Example Market Opportunity: Transportation

- Nikola is planning up to 28 hydrogen stations to support trucks
- Toyota is developing trucks with a focus on the drayage market
 - Partnered with Fuel Cell Energy to use biogas
- Drivers
 - Emission reductions
 - Corporate green objectives


Example Utilization Opportunity: Novel Processing

Flash Ironmaking Technology

$$Fe_3O_4 + (H_2, CO)$$

 $\rightarrow Fe + (H_2O, CO_2)$

Gas-Solid Suspension Reduction Hydrogen or Natural Gas

- Fine iron ore WITHOUT Coke/Pelletization/Sintering
- Significant Reduction in CO₂ & Energy Consumption
- Replace BF

- Today: primarily refining and ammonia production
- **Future:**
 - Metals
 - **Organic** products with CO₂ from ethanol and ammonia processing
 - Reductive processes

Example Focused Partnership: Low Carbon Ammonia

- BASF and Yara opened a low-carbon ammonia plant in April
- Freeport, TX
- Primary hydrogen supply:
 - By-product from Dow's ethylene cracking units
- Economic drivers:
 - Greener ammonia
- Linked to hydrogen pipeline and storage projects
- Reduction based on carbon credits

Examples of Broad Partnerships

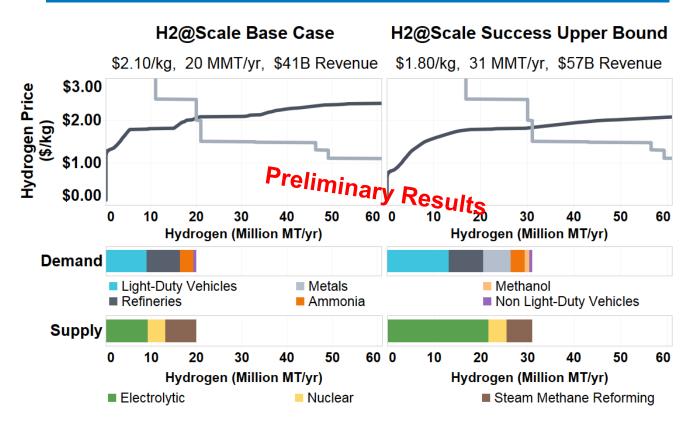
EnergiePark

Mainz

BIG HIT

Corporate Partners

- Calvera
- Community Energy Scotland
- Giacomini
- **ITM Power**
- Symbio FCell_I



Partners

- Hochshule RheinMain Linde AG
- Siemens AG

Mainzer Stadtwerke AG

National-Scale Value Proposition

- **Preliminary** analysis indicates that the U.S. hydrogen market can grow from 10 MMT/yr to >30 MMT/yr
- Requires
 realization of
 additional
 demands and
 lower cost
 production

11

Value Proposition Recommendations

- 1. Identify market opportunities
- 2. Find linkages
- 3. Partner

The H2@Scale R&D Consortium is a means to identify and initiate opportunities

Thank you

www.nrel.gov

Publication Number

