

Nuclear Energy Overview

August 1, 2018

Bradley Williams Senior Advisor to the Assistant Secretary for Nuclear Energy Office of Nuclear Energy U.S. Department of Energy

Nuclear Energy: A National StrategicAsset

- Recognition of the importance of nuclear today and in the future
 - Energy Security
 - Economic Prosperity
 - Global Security
 - Environmental Sustainability
- Concern about the financial viability of some currently operating plants, yet benefits from keeping them running
- Increased interest in nuclear in some domestic and international markets
- Innovators and utilities looking at advanced nuclear as a way to move beyond electricity
- Secretary Perry: Make Nuclear Energy Cool Again!

- 20% of electricity (56% of non-emitting)
- 92% capacity factor
- Supports 475,000 jobs
- \$10B in federal & \$2.2B in state taxes annually

"If you really care about this environment that we live in... then you need to be a supporter of this [nuclear energy] amazingly clean, resilient, safe, reliable source of energy." Secretary Rick Perry at Press conference, May 10th

Global Growth and Market Opportunity

Potential Nuclear Power Expansion

35 countries taking steps to develop nuclear power

30 countries with operating reactors developing expansion plans

~450 reactors operating 11% of electricity / 40% of clean electricity

- ~60 reactors under construction in 15 countries (20 in China)
- ~170 reactors planned in over 25 countries, worth as much as \$700 billion over the next 5-10 years
- ~370 reactors proposed in 36 countries, worth as much as \$1.6 trillion over the next 10-25 years

Source: IAEA/PRIS & WNA

Office of Nuclear Energy Mission Pillars

Gateway for Accelerated Innovation in Nuclear (GAIN)

A private-public partnership framework aimed at rapid and cost-effective development of innovative nuclear energy technologies towards market readiness

Mission

Provide the nuclear energy industry with access to <u>technical, regulatory and</u> <u>financial support</u> necessary to move innovative nuclear energy technologies toward *commercialization* in an accelerated and cost-effective fashion

@GAINnuclear

https://gain.inl.gov

Small Modular Reactors

Greater affordability

- Easier financing for public power entities
- Lower capital investment
- Factory fabrication, shorter construction times

New standard of passive nuclear safety

Energy and environmental benefits

- Greenhouse gas and air pollution avoided
- Grid benefits: stability, security, quality, availability, reliability
- Siting flexibility
- Hybrid energy systems and flexible integration with renewables

Importance to National Security

Economic development and job growth

- Manufacturing jobs and supply chain opportunities in the United States

Non-Water Advanced Reactor Designs Being Developed By Industry

Micro Reactors

Designed for Specialized Applications

- Siting flexibility including near population centers
- Micro-grids
- Remote Operating Bases
- Data Centers
- Disaster Relief (FEMA)
- Specialized Non-electric Applications

Nuclear Beyond Electricity – Advanced Reactors

Nuclear-Renewable Hybrid Energy Systems: Program Overview

Modeling and Simulation

Tool development and associated analysis to assess technical and economic viability and to determine optimal system design and energy dispatch *FY-18 Focus: Pilot case studies for specific plants and regions with utility partners*

• Demonstration / Experimental Systems

Electrically heated system testing to demonstrate hardware interfaces, control systems, dynamic operation FY-18 Focus: Design review with key stakeholders for PWR-emulation loop Design/build thermal energy distribution system (TEDS) to Connect PWR loop to hydrogen electrolysis.

- Stakeholder engagement
 - <u>Federa</u>I: DOE-EERE collaboration, complementary work in -OE, -FE, DOD
 - <u>Industry</u>: Utilities (incl. Utility Advisory
 Committee), developers, end users
 - International: Clean Energy Ministerial, various othe

supported by the DOE EERE Fuel Cell Technologies Office.

Evaluating Technical and Economic Feasibility with Utility Partners

Case I: Nuclear-Renewable-Water Integration in Arizona

- Electrical integration of existing nuclear generation and desalination in a region with significant solar generation
- Collaboration with Arizona Public Service (APS), operating owner of Palo Verde Generating Station, with consultation from Electric Power Research Institute (EPRI)

Case II: Nuclear-Industrial Process Variable Hybrid in the Midwest

- Retrofit of an existing LWR to support an industrial application and electricity production in a region with significant wind generation
- Focus on H2 generation and associated off-take industries (e.g., steel making or ammonia production)
- Collaboration with multiple industrial partners, led by Exelon, with consultation from EPRI

Nuclear Innovation: Clean Energy Future (NICE Future)

Official Launch:

At the 9th Clean Energy Ministerial (May 2018, Denmark) NICE Future was launched by the United States, Canada and Japan to spotlight nuclear energy in the internalonal clean energy community.

Overview:

NICE Future focuses on nuclear power as a clean energy opton for reliable and resilient baseload electricity, and non-electric applications especially when deployed as hybrid nuclear-renewable systems.

Areas of Work:

- 1) Evalualons of innovalve systems, technology, storage, uses
- 2) Policy-maker and Stakeholder Engagement
- 3) Economics
- 4) Communicalng nuclear energy's role in clean energy systems

Clean. Reliable. Nuclear.

BACK-UP

American Innovation Can Capture the Global Market

Advanced Nuclear Industry: Next Generation

© 2017 Third Way. Free for re-use with attribution/link.

Quick Comparison

	Light Water Reactors	High-Temp Gas Reactors	Sodium Fast Reactors	Gas-Cooled Fast Reactor	Lead-Cooled Fast Reactor	Molten Salt Reactors
Electrical Power (MWe)	600-1000	100-300	50-2000	1000	20-1200	1000
Coolant	water	helium	sodium	helium	Lead or lead- bismuth eutectic	Fluoride or other salt
Moderator	water	graphite				
System Pressure (MPa)	8-16	4-7	0.3	7-9	0.3	0.6
Coolant Temperature at Outlet (°C)	325	700-1000	500-550	750-850	480-570	700-800
Average Core Power Density (W/cm3)	100	4-8	>200	60-100	70-120	330

High Temperature Gas Reactors

Fast Reactors

- Sodium-Cooled Fast Reactors
 - Fast neutron spectrum
 - Low pressure for simplified compact operation
 - Liquid metal coolant high conductivity
 - Enhanced passive safety
 - High fuel utilization
 - Flexible fuel cycle applications that can be self-sustaining
- Lead-Cooled Fast Reactors
 - Liquid metal coolant that is not reactive with air or water
 - Lead or lead-bismuth eutectic options
 - Fast neutron spectrum
 - Low operating pressure
 - High fuel utilization
 - Flexible fuel cycle applications that can be self-sustaining

TerraPower – TWR Sodium Fast Reactor

Molten Salt Reactors

- Two major types salt cooled and salt fueled
 - High temperatures for non-electric applications
 - Low operating pressures
- Fluoride salt-cooled high temp reactor (FHR)
 - Molten fluoride salt as coolant; typically FLiBe
 - Solid fuel; typically TRISO in pins, pebbles
- Liquid Fueled Molten Salt Reactor
 - Molten salt used as both coolant and fuel
 - Salts typically fluoride or chloride
 - Thermal or fast spectrum
 - No fuel fabrication online refueling
 - On-line waste Management

TerraPower MCFR