Robust High-Temperature Heat Exchangers
(Topic 2A Gen 3 CSP Project; DE-EE0008369)

Illustrations of: (left) porous WC preform plates, (middle) dense-wall ZrC/W plates with horizontal channels and vertical vias. (Right) Backscattered electron image of the dense microstructure of a ZrC/W cermet.

Team: Ken H. Sandhage¹ (PI), Kevin P. Trumble¹ (Co-PI), Asegun Henry² (Co-PI), Aaron Wildberger³ (Co-PI)

¹School of Materials Engineering, Purdue University, W. Lafayette, IN
²Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA
³Vacuum Process Engineering, Inc., Sacramento, CA
State of the Art: Metal Alloy Printed Circuit HEXs

Current Technology:
- Printed Circuit HEXs: patterned etching of metallic alloy plates, then diffusion bonding
- Metal alloy mechanical properties degrade significantly above 600°C

State of the Art: Metal Alloy Printed Circuit HEXs

2010 ASME Boiler Pressure Vessel Code, Sec. II, from Tables 1A and 1B, July 1, 2010, New York, NY (compiled by Mark Anderson)
An Attractive Alternative: Compact Cermet HEXs

Current Technology:
- Printed Circuit HEXs: patterned etching of metallic alloy plates, then diffusion bonding
- Metal alloy mechanical properties degrade significantly above 600°C

New Technology*:
- ZrC/W HEXs: mechanical forming of channeled porous WC plates, conversion into dense net-size ZrC/W plates, then diffusion bonding
- Higher stiffness, strength, and thermal conductivity at ≥ 720°C

High melting point and chemical compatibility ($T_{\text{Solidus}} = 2,800^\circ C$, well above superalloys; tie line between ZrC and W)

Attributes of Co-Continuous ZrC/W Composites

- High melting point and chemical compatibility \(T_{\text{Solidus}} = 2,800^\circ\text{C} \), well above superalloys; tie line between ZrC and W
- Retention of stiffness and strength at 800° C \((E \geq 28 \times 10^6 \text{ psi/193 GPa}; \sigma_F \geq 50 \times 10^3 \text{ psi/350 MPa at RT and at 800° C}) \)

Failure Strength of Current Optimized ZrC/W

- Room Temperature
- 800°C
- 800°C with cycling

Failure Strength (MPa)

- Previous ZrC/W

[Graph showing failure strength data at different temperatures and conditions.]
Failure Strength of Current Optimized ZrC/W

Average RT Failure Strength: 531 ± 14 MPa; 77.0 ± 2 ksi
High melting point and chemical compatibility ($T_{\text{Solidus}} = 2,800^\circ\text{C}$, well above superalloys; tie line between ZrC and W)

Retention of stiffness and strength at 800$^\circ\text{C}$ ($E \geq 28x10^6$ psi/193 GPa; $\sigma_F \geq 50x10^3$ psi/350 MPa at RT and at 800$^\circ\text{C}$)

Enhanced toughness w.r.t. conventional monolithic ceramics ($K_{1C} = 9.4 \pm 2.3 \text{ MPa}\cdot\text{m}^{1/2}$ vs. $\leq 0.8 \text{ MPa}\cdot\text{m}^{1/2}$ for Pyrex, $\leq 1.4 \text{ MPa}\cdot\text{m}^{1/2}$ for concrete, $\leq 4.8 \text{ MPa}\cdot\text{m}^{1/2}$ for Hexoloy SiC)

• http://www.refractories.saint-gobain.com/hexoloy/hexoloy-grades
Attributes of Co-Continuous ZrC/W Composites

- **High melting point and chemical compatibility** ($T_{\text{Solidus}} = 2,800^\circ C$, well above superalloys; tie line between ZrC and W)
- **Retention of stiffness and strength at 800$^\circ C** ($E \geq 28 \times 10^6$ psi/193 GPa; $\sigma_F \geq 50 \times 10^3$ psi/350 MPa at RT and at 800$^\circ C$)
- **Enhanced toughness w.r.t. conventional monolithic ceramics** ($K_{1C} = 9.4 \pm 2.3$ MPa·m$^{1/2}$ vs. ≤ 0.8 MPa·m$^{1/2}$ for Pyrex, ≤ 1.4 MPa·m$^{1/2}$ for concrete, ≤ 4.8 MPa·m$^{1/2}$ for Hexoloy SiC)
- **Thermal expansion match** (W: $4.5 \times 10^{-6}/^\circ C - 9.2 \times 10^{-6}/^\circ C$ from RT - 2700$^\circ C$; ZrC: $4.0 \times 10^{-6}/^\circ C - 10.2 \times 10^{-6}/^\circ C$ from RT - 2700$^\circ C$)

Attributes of Co-Continuous ZrC/W Composites

- **High melting point and chemical compatibility** \((T_{\text{Solidus}} = 2,800^\circ C, \text{well above superalloys; tie line between ZrC and W}) \)

- **Retention of stiffness and strength at 800^\circ C** \((E \geq 28\times10^6 \text{ psi/193 GPa}; \sigma_F \geq 50\times10^3 \text{ psi/350 MPa at RT and at 800^\circ C}) \)

- **Enhanced toughness w.r.t. conventional monolithic ceramics** \((K_{1C} = 9.4 \pm 2.3 \text{ MPa}\cdot\text{m}^{1/2} \text{ vs.} \leq 0.8 \text{ MPa}\cdot\text{m}^{1/2} \text{ for Pyrex,} \leq 1.4 \text{ MPa}\cdot\text{m}^{1/2} \text{ for concrete,} \leq 4.8 \text{ MPa}\cdot\text{m}^{1/2} \text{ for Hexoloy SiC}) \)

- **Thermal expansion match** \((W: 4.5\times10^{-6}/^\circ C - 9.2\times10^{-6}/^\circ C \text{ from RT - 2700}^\circ C; \text{ ZrC:} 4.0\times10^{-6}/^\circ C - 10.2\times10^{-6}/^\circ C \text{ from RT - 2700}^\circ C) \)

- **High thermal conductivity** \((\kappa = 66.0 \text{ W/m-K at 800}^\circ C \text{ vs.} 22.1 \text{ W/m-K for IN740H,} 24.4 \text{ W/m-K for H230}) \)

Thermal shock resistance and thermal cyclability
(ZrC/W nozzles have survived $>10^3\,^\circ C/\text{sec}$ heatup to 2500$^\circ C$ in a Pi-K rocket test; thermal cycling at 10$^\circ C$/min from RT to 800$^\circ C$ has not resulted in a decrease in fracture strength at 800$^\circ C$)

Thermal shock resistance and thermal cyclability

(ZrC/W nozzles have survived >10^3 °C/sec heatup to 2500°C in a Pi-K rocket test; thermal cycling at 10°C/min from RT to 800°C has not resulted in a decrease in fracture strength at 800°C)

Corrosion resistance

(Purification of the molten MgCl$_2$-KCl salt, and the addition of 50 ppm CO to the sCO$_2$ with a Cu layer on the ZrC/W surface, have rendered ZrC/W composites resistant to corrosion at 750°C; PCT/U.S. patent application)

Attributes of Co-Continuous ZrC/W Composites

- **Thermal shock resistance and thermal cyclability**
 (ZrC/W nozzles have survived >10³ °C/sec heatup to 2500°C in a Pi-K rocket test; thermal cycling at 10°C/min from RT to 800°C has not resulted in a decrease in fracture strength at 800°C)

- **Corrosion resistance**
 (Purification of the molten MgCl₂-KCl salt, and the addition of 50 ppm CO to the sCO₂ with a Cu layer on the ZrC/W surface, have rendered ZrC/W composites resistant to corrosion at 750°C; PCT/U.S. patent application)

- **Cost-effective fabrication of ZrC/W-based HEX plates**
 (Scalable, low-cost forming and shape/size-preserving DCP reaction processing of ZrC/W-based plates with tailorable channels and headers for HEXs; PCT/U.S. patent application⁴)

• K. H. Sandhage, et al., *U.S. Patents No. 6,833,337, No. 6,598,656, No. 6,407,022.*
Project Objectives

◆ To design a robust ZrC/W-based heat exchanger with effectiveness and pressure drop values acceptable for the NREL test facility
Project Objectives

- To design a robust ZrC/W-based heat exchanger with effectiveness and pressure drop values acceptable for the NREL test facility

- To demonstrate scalable methods for:
 - fabricating thin (\leq3 mm) channeled ZrC/W-based HEX plates with integral headers
 - bonding such plates into HEX stack assemblies connected to Ni alloy tubes
Project Objectives

- To design a robust ZrC/W-based heat exchanger with effectiveness and pressure drop values acceptable for the NREL test facility.

- To demonstrate scalable methods for:
 - fabricating thin (≤3 mm) channeled ZrC/W-based HEX plates with integral headers
 - bonding such plates into HEX stack assemblies connected to Ni alloy tubes

- To develop a manufacturing pathway for, and determine the cost of, a 2 MW$_{th}$ ZrC/W-based heat exchanger for Phase 3 of the Gen 3 CSP program.
Areas of Expertise:

- Ceramic forming
- Thermal processing of ceramics
- Reactive melt infiltration
- **Near net-shape** processing
- Joining
- High-temperature corrosion
- Modeling and design of components for high-temperature thermal systems
- Scale up of manufacturing processes
Manufacturing of ZrC/W HEX Plates

Channeled Porous WC Preform Plate

Fabricate porous WC preform plates

Schematic illustrations of porous WC preform plates

Secondary electron image of a fractured cross-section

20 μm
Manufacturing of ZrC/W HEX Plates

Channeled Porous WC Preform Plate

→ Reactive Conversion

Channeled ZrC/W Plate

Fabricate porous WC preform plates

Generate net-size dense ZrC/W plates via DCP process

ZrC/W plate with molten salt channels

ZrC/W plate with sCO₂ channels

Schematic illustrations of dense-wall ZrC/W HEX plates
Displacive Compensation of Porosity

\[\text{WC(s)} + \{\text{Zr}\} \rightarrow \text{Infiltrated} \]
Displacive Compensation of Porosity

\[\text{WC}(s) + \{\text{Zr}\} \rightarrow \text{ZrC}(s) + \text{W}(s) \]

Infiltrated Partial Rxn
Displacive Compensation of Porosity

\[\text{WC}(s) + \{\text{Zr}\} \rightarrow \text{ZrC}(s) + \text{W}(s) \]

where \(V_m[\text{ZrC} + \text{W}] = 2.01 V_m[\text{WC}] \)

Infiltrated Partial Rxn Complete Rxn
Cu-Zr Phase Diagram

$T_{\text{fus}(\text{Zr})} = 1855^\circ\text{C}$
Melt Preparation and Infiltration Equipment

A. Intermediate oil-based HEX for cooling of the Cu induction coils (coupled to a closed chilled water loop)
B. Oil and water collector systems
C. Antechamber
D. Actively-cooled universal ram
E. Melt box (with induction coils for heating WC preforms and the Zr-Cu melt)
F. Pressure release valve
G. Pipe for venting of melt box

Cold-wall, Induction-heated Melt Infiltration System
Melt Preparation and Infiltration Equipment

A. Intermediate oil-based HEX for cooling of the Cu induction coils (coupled to a closed chilled water loop)
B. Oil and water collector systems
C. Antechamber
D. Actively-cooled universal ram
E. Melt box (with induction coils for heating WC preforms and the Zr-Cu melt)
F. Pressure release valve
G. Pipe for venting of melt box
Current ZrC/W-based HEX Plates

Dense channeled ZrC/W plate generated by shape/size-preserving reactive melt infiltration (DCP process) of a machined porous WC plate
The fabrication of thinner (< 3 mm) ZrC/W plates will be examined by:

- tape casting

Optical micrograph of a cross-section of a multilayer B\textsubscript{4}C/B\textsubscript{4}C-TiO\textsubscript{2} composite produced by tape casting of layers of B\textsubscript{4}C and B\textsubscript{4}C-TiO\textsubscript{2}, drying, stacking of alternating layers, and then thermal treatment (Trumble, et al.)

- uniaxial pressing

Photograph of a thin (1.7 mm) rigid porous WC plate produced by uniaxial pressing of a WC/binder mixture and then thermal treatment (Sandhage, et al.)
Diffusion Bonding of Cu Layers

Cu layers on surfaces for sCO₂

Massachusetts Institute of Technology

Vacuum Process Engineering

PURDUE UNIVERSITY
Diffusion Bonding of Cu Layers

Cu layers on surfaces for sCO₂
Diffusion Bonding of HEX Assembly

ZrC/W header plate

ZrC/W side panels for stiffening

Ni alloy tubes

Gas pressure test assembly (inlet tubes only)
Standard methods for modelling convection (including compressibility) at 750°C (far from the CO₂ critical point) will be used:
- Reynold’s Averaged Navier Stokes equations
- k-omega model for turbulent sCO₂ flow
Standard methods for modelling convection (including compressibility) at 750°C (far from the CO₂ critical point) will be used:
- Reynold’s Averaged Navier Stokes equations
- k-omega model for turbulent sCO₂ flow

FLUENT and/or COMSOL software will be used to model steady-state flow through the HEX channels for each fluid to calculate pressure drops
Standard methods for modelling convection (including compressibility) at 750°C (far from the CO₂ critical point) will be used:
- Reynold’s Averaged Navier Stokes equations
- k-omega model for turbulent sCO₂ flow

FLUENT and/or COMSOL software will be used to model steady-state flow through the HEX channels for each fluid to calculate pressure drops

The geometries and dimensions of the HEX channels and vias will be tailored to simultaneously optimize the effectiveness, pressure drops, and thermo-mechanical reliability
Work will be conducted to evaluate scalable:

- WC preform plate forming (casting, compaction, stamping) and heat treatments (drying, sintering)
- ZrC/W plate production (melt infiltration)
- Diffusion bonding (metal layers, plate stacks)
- Joining of Ni alloy tubes to header plates

VPE capabilities and expertise (thermal treatments, bonding) fit well with much of this scale-up work

Additional required equipment, facilities, and partners or vendors will be identified
ZrC/W cermets provide an attractive combination of high-temperature properties relative to state-of-the-art metal alloys
Summary

- ZrC/W cermets provide an attractive combination of high-temperature properties relative to state-of-the-art metal alloys.
- Low-cost ceramic forming methods, coupled with a shape/size-preserving reactive melt infiltration (DCP) process, can be used to fabricate dense ZrC/W HEX plates with tailorable channel patterns.
- Scalable strategies for manufacturing robust ZrC/W-based HEX assemblies have been identified.
ZrC/W cermets provide an attractive combination of high-temperature properties relative to state-of-the-art metal alloys.

Low-cost ceramic forming methods, coupled with a shape/size-preserving reactive melt infiltration (DCP) process, can be used to fabricate dense ZrC/W HEX plates with tailorable channel patterns.

Scalable strategies for manufacturing robust ZrC/W-based HEX assemblies have been identified.

Work with VPE and other (TBD) partners/vendors will be conducted to develop a manufacturing pathway to a 2 MWth ZrC/W HEX for Phase 3 of the Gen3 CSP program.
Questions?
Suggestions?