Creep-fatigue Behavior and Damage Accumulation of a Candidate Structural Material for Concentrating Solar Power Solar Thermal Receiver

M. McMurtrey, L. Carroll, M. Messner

DOE Gen 3 CSP Kickoff Meeting

6/25/2018
Orlando, FL

Idaho National Laboratory
Award # DE-EE00033872
Project Objectives

• Overall project goals
 • Provide an accurate description of the creep-fatigue behavior of a CSP thermal receiver candidate alloy
 • Develop a design method for solar receiver components to guard against high temperature creep-fatigue and ratcheting failure modes
 • Design procedure and D-diagram for an advanced nickel alloy for solar thermal receivers
 • Executable design procedure that produces designs that consistently exceed design life
Project Tasks

• Task 1: Creep-Fatigue Testing and Metallographic Analysis
 • Alloy selection
 • Fatigue and creep-fatigue testing
 • Creep testing as necessary
• Task 2: Analysis of Design Methodology
 • Creep-fatigue interaction diagram (D-diagram)
 • Ratcheting design provisions
• Task 3: Assessment of Environmental Interaction
 • Preliminary assessment of additional factors that influence design life
Task 1: Alloy Selection

- Alloy selected for creep-fatigue testing and for design model
 - Candidate alloys: Alloys X, 625, 617, 230, 740H, and 282
 - Alloys evaluated based on available data and high temperature strength

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Creep</th>
<th>Creep-Fatigue 700 to 800 °C</th>
<th>Creep-Fatigue to 800 to 1000 °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alloy 617</td>
<td>Green</td>
<td>Green</td>
<td>Green</td>
</tr>
<tr>
<td>Alloy 230</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Alloy 282</td>
<td>Yellow</td>
<td>Yellow</td>
<td>Yellow</td>
</tr>
<tr>
<td>Alloy 740H</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
<tr>
<td>Alloy X</td>
<td>Red</td>
<td>Red</td>
<td>Red</td>
</tr>
</tbody>
</table>

Red = limited or none
Yellow = some
Green = considerable

ASME Code Section I Stress allowables

ASME Boiler and Pressure Vessel Code, American Society of Mechanical Engineers, 2017
Task 1: Fatigue and Creep-fatigue Testing

- Preliminary tensile v. compressive dwell sensitivity for a nickel alloy
- Proposed fatigue and creep-fatigue test matrix
- Creep testing as necessary

<table>
<thead>
<tr>
<th>Strain Range</th>
<th>Estimated Nf</th>
<th>Hold Time</th>
<th>Repeats</th>
<th>Estimated Test Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>cycles</td>
<td>minutes</td>
<td></td>
<td>days</td>
</tr>
<tr>
<td>0.6</td>
<td>60,000</td>
<td>0</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>0.6</td>
<td>12,500</td>
<td>10</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>0.6</td>
<td>6,000</td>
<td>60</td>
<td>2</td>
<td>251</td>
</tr>
<tr>
<td>0.6</td>
<td>3,000</td>
<td>120</td>
<td>1</td>
<td>250</td>
</tr>
<tr>
<td>1.0</td>
<td>2,000</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>1.0</td>
<td>700</td>
<td>10</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>200</td>
<td>60</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>1.0</td>
<td>70</td>
<td>240</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>1.0</td>
<td>35</td>
<td>240</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>1.0</td>
<td>35</td>
<td>600</td>
<td>2</td>
<td>15</td>
</tr>
</tbody>
</table>

750°C

<table>
<thead>
<tr>
<th>Strain Range</th>
<th>Estimated Nf</th>
<th>Hold Time</th>
<th>Repeats</th>
<th>Estimated Test Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>cycles</td>
<td>minutes</td>
<td></td>
<td>days</td>
</tr>
<tr>
<td>0.4</td>
<td>10,000</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>0.4</td>
<td>3,000</td>
<td>10</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>0.4</td>
<td>2,000</td>
<td>60</td>
<td>2</td>
<td>84</td>
</tr>
<tr>
<td>0.4</td>
<td>1,000</td>
<td>240</td>
<td>2</td>
<td>167</td>
</tr>
<tr>
<td>1.0</td>
<td>2,000</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>1,000</td>
<td>10</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>1.0</td>
<td>500</td>
<td>60</td>
<td>2</td>
<td>21</td>
</tr>
<tr>
<td>1.0</td>
<td>200</td>
<td>240</td>
<td>2</td>
<td>33</td>
</tr>
<tr>
<td>1.0</td>
<td>200</td>
<td>600</td>
<td>2</td>
<td>83</td>
</tr>
</tbody>
</table>

850°C
Task 2: Receiver Design Rules

- Previous design studies reference a Sandia National Laboratory report\(^1\) establishing draft design guidelines
 - Amalgamation of provisions from several divisions of the ASME Boiler and Pressure Vessel Code\(^2\)
 - Section III, Division 5
 - Section VIII, Division 1
 - Section VIII, Division 2
- Most high temperature design provisions guard against failure through the following mechanisms (all relevant for CSP thermal receivers)
 - Time-independent plastic instability
 - Time-dependent creep rupture
 - Creep-fatigue damage
 - Time-dependent, cyclic excessive deformation (ratcheting)
 - Time-independent buckling
 - Time-dependent buckling
- Since the Section VIII rules are widely applied and understood, they will be adopted for this project

Task 2: Receiver Design Rules

- Focus will be on ASME linear damage summation
 - Creep-rupture correlation (ASME BPVC Code Case 2702)
 - Fatigue curves and D-diagram
- Design rules will guard against
 - Excessive ratcheting
 - Starting point will be Code Case N-47 providing ratcheting strain accumulation rules using a simplified elastic perfectly-plastic analysis
 - Requires a set of isochronous stress-strain curves
 - Creep-fatigue failure
 - Consider Section III rules and previous CSP methods

Creep-fatigue interaction diagram reproduced from ASME Section III, Division 5, Subsection HB, Subpart B
Task 3: Assessment of Environment

- Original proposal called for an assessment of environmental influence at 750°C
- Q1 suggested shifts in focus
 - Potential creep-fatigue testing of weldments
 - Testing of tube/sheet material forms
 - Final design rules should encompass all potential receiver types
 - Current test plan includes only plate material
Summary

• Three tasks
 • Task 1: Creep-Fatigue Testing and Metallographic Analysis
 • Alloy selection
 • Experimental testing and analysis
 • Task 2: Analysis of Design Methodology
 • D-Diagrams, isochronous curves, ratcheting design provisions
 • Task 3: Assessment of Environmental Interaction
 • Preliminary assessment of additional factors that influence design life, proposed focus was gas environment
 • Suggested shift in focus to weldment or tubular/sheet form testing