Office of Enterprise Assessments
Assessment of Conduct of Engineering at the
Idaho National Laboratory

August 2018

Office of Nuclear Safety and Environmental Assessments
Office of Environment, Safety and Health Assessments
Office of Enterprise Assessments
U.S. Department of Energy
Table of Contents

Acronyms .. ii

Executive Summary ... iii

1.0 Purpose .. 1

2.0 Scope ... 1

3.0 Background ... 1

4.0 Methodology ... 2

5.0 Results ... 2

5.1 Design Engineering Processes ... 2

5.2 Engineering Products Technical Review ... 4

5.3 Configuration Management and Change Control .. 9

5.4 Issues Management and Performance Monitoring Within the Engineering Organization 11

5.5 Engineering Procurement ... 14

6.0 Findings ... 15

7.0 Opportunities for Improvement ... 15

Appendix A: Supplemental Information ... A-1

Appendix B: Key Documents Reviewed, Interviews, and Observations ... B-1

Appendix C: Deficiencies .. C-1
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR</td>
<td>Advanced Test Reactor</td>
</tr>
<tr>
<td>BEA</td>
<td>Battelle Energy Alliance, LLC</td>
</tr>
<tr>
<td>CFP</td>
<td>Construction Field Problem</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CM</td>
<td>Configuration Management</td>
</tr>
<tr>
<td>DOE</td>
<td>U.S. Department of Energy</td>
</tr>
<tr>
<td>EA</td>
<td>Office of Enterprise Assessments</td>
</tr>
<tr>
<td>ECAR</td>
<td>Engineering Calculations and Analysis Report</td>
</tr>
<tr>
<td>eCR</td>
<td>Electronic Change Request</td>
</tr>
<tr>
<td>EDMS</td>
<td>Electronic Document Management System</td>
</tr>
<tr>
<td>EJ</td>
<td>Engineering Job</td>
</tr>
<tr>
<td>HSIS</td>
<td>Hydraulic Shuttle Irradiation System</td>
</tr>
<tr>
<td>INL</td>
<td>Idaho National Laboratory</td>
</tr>
<tr>
<td>MFC</td>
<td>Materials and Fuels Complex</td>
</tr>
<tr>
<td>NQA</td>
<td>Nuclear Quality Assurance</td>
</tr>
<tr>
<td>OFI</td>
<td>Opportunity for Improvement</td>
</tr>
<tr>
<td>PPE</td>
<td>Personal Protective Equipment</td>
</tr>
<tr>
<td>SDD</td>
<td>System Design Description</td>
</tr>
<tr>
<td>SSC</td>
<td>Structure, System, and Component</td>
</tr>
<tr>
<td>USQ</td>
<td>Unreviewed Safety Question</td>
</tr>
<tr>
<td>WO</td>
<td>Work Order</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

The U.S. Department of Energy (DOE) Office of Environment, Safety and Health Assessments, within the independent Office of Enterprise Assessments (EA), conducted an assessment of conduct of engineering at the Idaho National Laboratory. The purpose of this EA assessment was to evaluate the effectiveness of engineering processes and programs implemented by the laboratory contractor, Battelle Energy Alliance, LLC (BEA).

The BEA engineering organization includes a centralized support staff and two facility-specific engineering groups located on site at the Advanced Test Reactor and Materials and Fuels Complex. The engineering groups at the Advanced Test Reactor and Materials and Fuels Complex support the Operations and Maintenance organizations, provide the system engineering function, maintain the technical baseline, and manage the design change process for their respective facilities, while the central engineering group controls laboratory-wide procedures and provides a limited support role in several areas.

This assessment examined engineering procedures and the application of those procedures in the development of engineering products, such as specifications, calculations, drawings, and design change packages. EA also examined the configuration management program, engineering performance monitoring, procurement, and issues management as implemented within the engineering organization.

EA concluded that most of the engineering processes examined are adequately structured to accomplish the intended functions. The technical baseline is well documented and generally meets DOE expectations. Implementation of the design change control and documentation control processes is adequate. The procurement process and its supporting elements of specification development, quality level determination, and commercial grade dedication are well implemented. The issues management process used by BEA is effective at identifying, analyzing, and correcting issues, including issues identified by engineering and issues that engineering helps to resolve.

EA also found, based on a sample, that most engineering products are of adequate quality and technically defensible.

Despite these strengths, EA identified some process and product related weaknesses that should be addressed:

- The calculation procedure contains insufficient guidance to ensure closure of open items.
- The configuration management assessment process is not being adequately implemented as defined in DOE STD-1073-2003, Configuration Management.
- The unreviewed safety question procedure does not adequately address consideration of design changes implemented in partial steps with intermediate return to service of affected systems/facilities.
- The organizational performance monitoring and assessment process is not effective, with no internal engineering self-assessment process and limited external assessments of engineering by other BEA organizations.
• Calculations were not always updated when impacted by an approved design change.

• In two instances, system design descriptions were not updated when impacted by a design change.

• Some design change packages lacked adequate technical basis for the proposed change.

These weaknesses reflect areas for improved performance. The minor exceptions noted in product quality were limited in impact and affected only a small portion of the overall review population. Many of the weaknesses identified by EA were documented in the laboratory-wide corrective action system before the end of the review.
1.0 PURPOSE

The U.S. Department of Energy (DOE) Office of Environment, Safety and Health Assessments, within the independent Office of Enterprise Assessments (EA), performed an assessment of conduct of engineering at the Idaho National Laboratory (INL). The purpose of this EA assessment was to evaluate the effectiveness of engineering processes, products, and programs implemented by the laboratory contractor, Battelle Energy Alliance, LLC (BEA).

EA performed this assessment from March 19, 2018, through April 12, 2018. This report discusses the scope, background, methodology, results, and conclusions of the assessment, as well as the opportunities for improvement (OFIs) identified by the review team.

2.0 SCOPE

This assessment examined engineering processes in use by the BEA engineering support organization, and the application of those processes in the generation and delivery of engineering products, such as specifications, calculations, drawings, and design change packages. EA also examined the flowdown of safety basis requirements into technical baseline documents and other engineering deliverables, and the procurement process. Reviews were performed of the configuration management (CM) program, engineering performance monitoring, and issues management as implemented within the engineering organization.

This review scope was in accordance with the Plan for the Office of Enterprise Assessments Assessment of Conduct of Engineering at the Idaho National Laboratory Site, March – April 2018.

3.0 BACKGROUND

The Idaho Site has numerous facilities, with DOE oversight provided by the DOE Office of Nuclear Energy Idaho Operations Office (DOE-ID) for some and by the DOE Office of Environmental Management for others. The Office of Nuclear Energy provides oversight for INL, which includes both the Advanced Test Reactor (ATR) and Materials and Fuels Complex (MFC) facilities.

The BEA engineering organization includes a centralized support staff located in Idaho Falls, Idaho, and two facility-specific engineering groups located on site at ATR and MFC. These groups also have access to subcontractor engineering resources available from local outside agencies. The central engineering group controls laboratory-wide procedures, provides subject matter experts, performs specialized analyses, and supplements the facility-specific groups when necessary. The engineering groups at ATR and MFC support the Operations and Maintenance organizations; provide for the cognizant system engineer function required by DOE Order 420.1C, Facility Safety; maintain the technical baseline; and manage the design change process for the facility.

This assessment of engineering performance and quality is one of several either planned or completed at hazard category 1, 2, and 3 facilities across the DOE complex. This assessment, in particular, was proposed by DOE Idaho Operations Office line management within an EA-31/DOE-ID planning process,
and the implementation plan was developed with input from that organization. Assessments of the conduct of engineering were identified as a focus area in a memorandum from the Director of EA to DOE senior line management, dated May 3, 2016.

4.0 METHODOLOGY

The DOE independent oversight program is described in and governed by DOE Order 227.1A, Independent Oversight Program. EA implements the independent oversight program through a comprehensive set of internal protocols, operating practices, assessment guides, and process guides. Organizations and programs within DOE use varying terms to document specific assessment results. In this report, EA uses the terms “deficiencies, findings, and opportunities for improvement (OFIs)” as defined in DOE Order 227.1A. In accordance with DOE Order 227.1A, DOE line management and/or contractor organizations must develop and implement corrective action plans for the deficiencies identified as findings. Other important deficiencies not meeting the criteria for a finding are highlighted in the report and summarized in Appendix C. These deficiencies should be addressed consistent with site-specific issues management procedures.

As identified in the assessment plan, this assessment considered requirements related to the conduct of engineering. EA used the criteria and lines of inquiry for successful conduct of engineering identified in EA Criteria and Review Approach Document 31-13, Conduct of Engineering, Revision 1, to evaluate contractor performance.

EA examined key documents, such as system descriptions, calculations, procedures, manuals, design change packages, policies, procurement documents, and training and qualification records. EA also interviewed key personnel responsible for developing and executing the associated programs, and performed walkdowns where appropriate. The members of the EA assessment team, the Quality Review Board, and EA management responsible for this assessment are listed in Appendix A. A detailed list of the documents reviewed, personnel interviewed, and observations made during this assessment, relevant to the conclusions of this report, is provided in Appendix B.

There were no items from previous assessments requiring follow-up during this assessment.

5.0 RESULTS

5.1 Design Engineering Processes

This section discusses EA’s assessment of the processes in place within BEA to perform engineering functions. BEA is contractually committed to American Society of Mechanical Engineers Nuclear Quality Assurance (NQA)-1-2008 with 2009 Addenda. EA used this standard in conjunction with DOE requirements to form the basis for this portion of the assessment.

Objective:

Design engineering work is performed consistent with technical standards, DOE requirements, and safety basis requirements and commitments, using approved procedures and sound engineering/scientific principles in accordance with the requirements of 10 CFR 830.
Criteria:

- Engineering procedures are in place and contain appropriate detail to control development, approval, issuance, and revision of deliverables, as well as key processes essential to the design engineering function. (10 CFR 830)

- Engineering procedures provide barriers against poor performance, require participation and review by appropriate organizations, and drive communication between distinct groups. Verbatim compliance is required. (10 CFR 830)

EA reviewed engineering processes for several primary engineering design functions, including preparation and approval of drawings, calculations, unreviewed safety question (USQ) evaluations/screenings, and design change packages. In most areas, the processes reviewed provide adequate guidance to accomplish the subject activities in a technically acceptable, controlled manner. Review results for individual processes are briefly summarized below:

- PDD-10000, Conduct of Engineering, provides a roadmap of the engineering process, with references to implementing procedures and an excellent overall description of how engineering work is to be accomplished. However, it calls out separate change processes for low rigor change control and for high rigor change control, but does not define the differences between these, or when one would be applicable versus the other. (See OFI-BEA-1.)

- LWP-10000, Engineering Initiation, establishes the process for initiating engineering work, including development of design inputs and determination of the applicable change process (Table 1 of LWP-10000 is used to determine when LWP-10501, Engineering Change Control, applies). This process is important to overall safety because BEA procedures allow changes to be made outside the change control process if they do not affect safety structures, systems, and components (SSCs), including those important to safety. LWP-10000 also defines the level of verification required, with both checking and design review required for changes to safety SSCs.

- LWP-10200, Engineering Calculations and Analysis Report, defines a process for preparing and issuing engineering calculations that is adequate in most respects, with one weakness noted. LWP-10200 requires the documentation of open items, such as unverified assumptions; however, it does not define any process to track those open items to closure. Calculations are generally performed in support of the design change process, so the absence of such a mechanism could result in installation or modification of SSCs without adequate technical basis. (An interview confirmed at least one instance of design change package closure without closure of an underlying calculation open item at MFC.) (Deficiency) BEA generated condition report CO-2018-0831, Validating Engineering Assumptions, to document and resolve this issue. EA also noted that the definition for safety SSCs in this procedure does not match that in LWP-10000 and LST-10000, Engineering Definitions.

- LWP-10106, Engineering Verification, requires adequate verifier independence per NQA-1 and defines an adequate verification process.

- LWP-10501 defines the design change control process for safety SSCs, with SP-30.1.2, MFC and TREAT Facility Modification Control, providing additional guidance specific to the MFC facilities. These procedures provide adequate guidance regarding the development of design inputs, identification of impacted documents, verification, interdisciplinary review, and document updates following implementation. However, consistent with the issue identified for LWP-10200 above, the
closure processes defined in LWP-10501 and SP-30.1.2 do not contain any requirement for verification that calculation open items have been addressed/closed.

- **LWP-10800, INL Category A Reactor Unreviewed Safety Questions**, and LWP-10801, INL Unreviewed Safety Questions, adequately cover the basic USQ screening and evaluation processes for ATR and MFC, respectively. However, neither procedure addresses requirements for USQ screening/evaluation of design change packages structured to be completed in multiple elements or phases. **(Deficiency)** Examples of such packages are discussed in Section 5.2 below. Return to service of a nuclear facility with a partially implemented change package must be based on compliance with the facility safety basis, a function normally accomplished through the USQ screening/evaluation process that may require prior change approval obtained through that process.

- **LWP-10102, Drawings and Sketches**, states in Section 1.0 that its purpose is for requesting and creating drawings or sketches. Provisions for those functions are adequate. However, Section 4.3 of LWP-10102 also provides guidance for revising drawings. LWP-10102 does not reference or mention LWP-10501 and provides a proceduralized path to change engineered drawings while avoiding the change control process. In response, BEA central engineering revised the procedure to include that reference and provide guidance on LWP-10501 applicability. Finally, EA’s review indicated that, with few exceptions, drawings are not marked or labeled with either the quality level or safety category, potentially creating an error-likely situation for component classification determinations and change process selection (high rigor vs low rigor, see PDD-10000 above). BEA generated condition report CO-2018-0832, Safety SSC Identification on Drawings, to document and resolve this issue.

Engineering Process Conclusions

EA concluded that most of the engineering processes examined are adequately structured to accomplish the intended functions. However, review of the calculation procedure and the USQ procedures identified gaps, potentially indicating that these processes are not sufficiently rigorous.

5.2 Engineering Products Technical Review

This section focuses on the quality of engineering technical products created using the processes examined in Section 5.1. In each area, EA selected a limited sample of documents produced or closed within the last year for detailed review.

Objective:

Design engineering work is performed consistent with technical standards, DOE requirements, and safety basis requirements and commitments, using approved procedures and sound engineering/scientific principles in accordance with the requirements of 10 CFR 830.

Criteria:

- Documents comprising the project technical baseline are readily identifiable and subject to appropriate control measures. System design documents and supporting documents must be identified and kept current using formal change control and work control processes. *(10 CFR 830)*
• Analyses and calculations are prepared with design inputs clearly identified and assumptions technically justified (or unverified assumptions clearly identified and tracked to resolution), prepared consistent with the design criteria and safety basis, and checked by a second party and verified by an independent verifier, as appropriate. (10 CFR 830)

• Design drawings are subject to interdisciplinary review as appropriate prior to issuance, accessible and retrievable in the most current version, and in accordance with applicable design criteria and industry standards. (10 CFR 830)

Calculations

Engineering calculations and analysis reports (ECARs) are performed in accordance with LWP-10200. An electronic template, TEM-10200-1, *Engineering Calculations and Analysis Report Template*, is available to ensure that all required information is provided.

EA examined 33 ECARs to determine whether design inputs were clearly identified, assumptions were technically justified, and results were appropriately checked/verified. The examined ECARs were satisfactory, with the following exceptions:

• EA identified two instances of ECAR revisions that changed the assumptions in the ECARs but did not correspondingly update the appendix section that addressed verification of the assumptions. BEA produced evidence to demonstrate that the assumptions were appropriately verified, and initiated a change to capture the correct information in the affected ECARs. This issue is being tracked in the commitment tracking system as condition report CO-2018-0763, *ECARs need revision*.

• EA identified one instance of an ECAR assumption that was not adequately supported by the information provided in the report. ECAR-3245, *SSPAS Fire Assessment*, assumes a 0.1-inch gap between the first lead sheet of the shielded sample preparation area system shielding and the stainless steel outside shell. This gap provides enough resistance against heat transfer to prevent significant melting of the lead during the calculated fire. BEA was able to produce evidence from drawings that supported the existence of the gap.

• Calculation ECAR-2461, *Electrical Load Study for Panel 670-E-31*, specifies a 20A breaker for the new ATR canal demineralizer unit. Design change EJ-7.4.11.3-1/1340, *ATR Canal Ion Exchange System Replacement – Electrical*, installed a 15A breaker, which is adequate to supply the new demineralizer electrical load. However, ECAR-2461 has not been revised to reflect the installed (15A breaker) configuration. (Deficiency)

Technical Evaluations

BEA produces technical evaluations in accordance with LWP-10300, *Technical Evaluation*. BEA appropriately uses technical evaluations to document a determination of equivalency when an originally specified item is no longer available or if interface or functional requirements have changed.

EA reviewed 18 technical evaluations to determine whether the assumptions and conclusions were technically justified. EA determined that all of the technical evaluations examined were adequately justified and appropriately reviewed and checked.
Drawings

Engineering drawings are produced and revised in accordance with LWP-10102. EA examined over 100 drawings to determine conformance with the procedure and appropriate interdisciplinary review.

All of the drawings examined by EA were in accordance with industry standards, with clear, legible, dimensioning, and auxiliary views and/or solid model representations to aid in comprehension. Evidence of appropriate interdisciplinary review was found on electronic change requests (eCRs) that are used to capture review comments and resolutions.

Some of the reviewed drawings depicted safety-related components, while other drawings did not, even though items on the drawing were credited in the corresponding safety analysis. As noted under Engineering Processes, above, there is no requirement for identifying safety-related drawings in LWP-10102.

Design Change Packages

BEA processes design changes using LWP-10501. MFC has augmented the requirements in LWP-10501 with facility-specific procedure SP-30.1.2. Each design change is appropriately tracked using an engineering job (EJ) package that documents the engineering deliverables, the discipline interfaces, the verification of the engineering deliverables, the implementation of the change, and turnover/closure. BEA uses a technical integrator and CM engineer to oversee the process and ensure compliance with expectations of the procedure.

EA examined over 41 EJs to determine the effectiveness of the design change process. The packages reviewed contained references to numerous engineering products, including drawings, calculations, technical evaluations, USQ reviews, and procurement specifications. EA also interviewed several engineers who performed the EJs, to understand their use of the process. The engineers were knowledgeable about the development of EJs and the application of EJs versus other engineering products.

The EJs sampled in this assessment adequately documented the full extent of the design change, with several exceptions listed below. Electronic copies of the completed EJs contained additional documents produced as part of the EJ, including eCRs and USQs. Although the specific types of documents attached to the electronic copies of the EJs varied somewhat, all of the EJs reviewed appropriately contained the unique document numbers of the engineering products associated with the EJ, as well as interim products, such as eCRs, to document satisfactory review, comment collection, comment resolution, and approval of the engineering products.

EA identified the following issues associated with the EJs:

- Two ATR EJs affected but did not update associated system design descriptions (SDDs). EJ 7.9.25-8, Removal Of Irradiated HSIS Intank Assembly From ATR Reactor Vessel, rendered the hydraulic shuttle irradiation system (HSIS) inoperable but recoverable. Engineering chose not to revise the SDD until it decided whether the HSIS would be restored using a new design. EJ 7.9.12-92, ATR Loop 1 C-W, Relief Valve Discharge Piping Modification For SF-135, 137 and 535, identified SDD-7.9.12, Experiment Inpile Tube Facility ATR 1C-W, as an affected document, but engineering did not update the SDD as a part of the design change package. Instead, engineering wrote CO-2017-0502, AHTL Experiment Pressurized Water Loop 1C-W, documenting the need for a separate effort to perform a major revision of the SDD since it has not been updated in 30 years. The general action to do this has not yet been completed.
• EJ 7.0-11, *Seismic Upgrade for ATR Control Room Masonry Partition Walls*, was issued to seismically upgrade a masonry wall in the ATR control room. Implementation of this EJ was accomplished in several phases during reactor outages, with the reactor returning to service between phases. The inadequate USQ screening performed for this EJ resulted in reactor operation under conditions of indeterminate compliance with the safety basis and in violation of at least one ATR procedure. Issues noted included the following: (Deficiency)

 o Holes were drilled through a confinement boundary, but this was not addressed in the USQ.

 o A work order (WO) to move conduit and utilities stated that the USQ was covered by the main WO or by exemption, neither of which was true.

 o One phase left a vertical steel column in the control room partially installed and unanchored at the top. No USQ was performed to evaluate potential consequences of this interim condition. SD-11.1.46, *ATR System Interaction Hazard Control*, does not allow unrestrained interactions from non-seismic commodities in the control room.

• EJ 7.9.2-28, *1D-N Asbestos Abatement*, replaced asbestos piping insulation with calcium silicate insulation in a room at ATR. EA identified the following issues: (Deficiency)

 o The EJ did not include the technical justification for the acceptability of the change from an engineering standpoint. When this question was raised, BEA provided EA with an email string where the difference in insulation weight was calculated and concluded to have no impact. (The basis for this no-impact determination was not provided.)

 o An existing piping analysis calculation (ECAR-2374, *ATR Experiment Loop 1D-N PCS Piping and Support Analysis Per ANSI B31.1b-1973 Criteria*) was referenced, but the estimated increases in pipe loading of 2-7% from this EJ were not compared with available margins from that calculation.

 o ECAR-2374 was not revised to track the reduced margin. An interview with ATR individuals involved with this EJ revealed that stresses in some of the affected piping already exceeded code allowables prior to this change.

 o No USQ was performed for this EJ, even though a USQ was required by Appendix D of LWP-10501. (Deficiency)

Follow-up on this last issue with a nuclear safety program lead indicated that assessments are performed to assess the quality of USQ screens/evaluations; however, these assessments do not include any broader review of engineering products to gauge whether USQ screens/evaluations are being performed when required by procedure.

• EJ-1695, *MFC-754 Modification of Potable/Fire water Tank Level & Water Distribution Controls*, installed level indication on the MFC 400K gallon fire/potable water tank. The quality level determination risk analysis method performed for this design change describes the activity as having a moderate level of importance, stating that calculations and analyses were necessary. However, the document requirement section of EJ-1695 does not list any calculations, analyses, or technical evaluations associated with this design change. The work was completed and turned over without reference to any calculations or analyses, and BEA has not been able to produce a calculation for the MFC fire/potable required water volume and alarm setpoints. BEA initiated corrective action CO2018-0846 to address this issue.
• EJ-1793, Static Trip III Replacement for Substation 786 North Main Breaker 1-2, EJ-1812, Static Trip III Replacement for Substation 786 South Main Breaker 5-2, EJ-1813, Static Trip III Replacement for Substation 786 Tie Breaker 3-2, and EJ-1971, Static Trip III Replacement for Substation 786 Feeder Breakers, changed breaker trip settings on MFC Substation 768 to lower the personal protective equipment (PPE) requirements. The stated purpose of the EJs is to incorporate new trip settings as defined in TEV-2418, Evaluation of Static Trips for the use in MFC 786 Substation Main Breakers 1-2, 5-2 & Tie Breaker 3-2. EA’s review of the design analysis that established the new trip settings (TEV-2418) through the design change process indicated the following shortcomings and inconsistencies: (Deficiency)

 o The results and conclusion section for revisions 0 and 1 of TEV-2418 has two recommendations but does not specify any breaker settings, although the settings should have been clearly specified in the evaluation. The EJs and associated work orders directed the worker to set breakers per this TEV. Although the TEV does not call out revised breaker settings, there are breaker coordination curves in the back of the TEV that analyze new settings.

 o Figure 13, Recommended Settings for 5-2, 1-2 and Tie Breaker 3-2, of TEV-2418 determines five settings for these breakers but does not include the setting and time delay for the ground fault protection. There are seven settings for a breaker, but the TEV only established five settings, without specifying the ground fault settings or discussing how the ground fault settings would affect the arc flash analysis.

 o Figure 16, TCC coordination between 5-2 and 5-3, of TEV-2418 shows five setpoints for breaker 5-3 but does not clearly state that these are the recommended settings. Also, as in the case of Figure 13, the setting and time delay for the ground protection are not specified.

 o Drawing 742027, MFC-768 HFEF 480V Substation Normal Power Substation and Switchgear Layout and One Line Diagram, specifies a ground fault pickup setting of 20% with a 0.10 second delay for breakers 5-2, 1-2, and 3-2. These values are correct, but were not identified in the results of TEV-2418 or referenced in the EJs.

 o WO 216399, 786 Install Main Breakers for Substation, adjusted the ground fault trip device settings for pick-up and time delay to maximum, rendering the ground fault device less effective. Although this may have been technically acceptable for a “main” breaker, there is no engineering justification or reference calculation provided.

BEA initiated corrective action CO-2018-0908, Incorrect Breaker Trip Settings, to correct the ground fault protection settings in accordance with the design drawing.

Engineering Product Technical Review Conclusions

Overall, most engineering products reviewed are of adequate quality and technically defensible. However, both SDDs and calculations are not always updated to reflect changed facility conditions. Implementation of the USQ screening/evaluation process is weak for design change packages implemented in multiple phases or elements. While most EJs reviewed were adequately developed, a limited portion lacked sufficient explanation or basis for the technical adequacy of the design change.

5.3 Configuration Management and Change Control

The engineering role in CM includes functions associated with creating and maintaining the technical baseline for the facility, controlling the design change process, managing engineering records, and
performing self-critical assessments to ensure continued adequacy of performance in these areas.
Guidance for these functions is included in DOE-STD-1073-2003, Configuration Management, and DOE Order 420.1C.

Objective:

A documented CM program has been established and implemented in accordance with DOE Order 420.1 that ensures consistency among system requirements and performance criteria, system documentation, and physical configuration of the systems within the scope of the program.

Criteria:

- Design input and output documents are appropriately established. Requirements from upper tier documents are appropriately incorporated into successor (or lower tier) documents. System design basis documents are kept current using formal change control and work control processes. (DOE-STD-1073-2003)

- A design change process is in place to ensure that all documents affected by a change, both predecessor and successor, are identified and revised as part of the change process; that changes are reviewed by all potentially affected disciplines and organizations; and that extant changes against technical documents are tracked from initial issuance until incorporation in an approved revision. (DOE-STD-1073-2003)

- A records management system has been implemented to provide accessibility to engineering documents using a process that defaults to the most recent revision; tracks unincorporated changes outstanding against issued documents; and limits outstanding changes against engineering documents, such as drawings, to avoid negative impacts from excessive change paper and difficulties in determining the current design configuration. (DOE-STD-1073-2003)

PDD-10502, INL Configuration Management Program, is the BEA program document for CM. It is supported by LWP-10500, Managing the Configuration of Structures, Systems, and Components, an overview document with general guidance reflecting a system-based approach to CM. Overall, responsibility for CM rests with the facility engineering manager.

Technical Baseline

The technical baselines for nuclear facilities at both ATR and MFC are documented and maintained in various safety basis documents, including Safety Analysis Reports, Documented Safety Analyses, engineering design files, ECARs, technical evaluations, and other technical documents, some of which were addressed previously in Section 5.2 of this report. Procedure LWP-10105, Facility/System Requirements Documentation (COR/T&FR/SDD), addresses development and documentation of the technical baseline for nuclear SSCs, requiring SDDs for all active safety SSCs in hazard category 1, 2, or 3 nuclear facilities at INL. SDDs are used appropriately as the primary mechanism to document the requirements, features, and critical characteristics of systems that perform a safety function. LWP-10105 includes electronic template TEM-10105-2, Template for System Design Descriptions, for ensuring a standard format when creating or revising SDDs.

LWP-10105 and TEM-10105-2 adequately capture the recommended format and content for SDDs contained in DOE STD-3024-2011, Content of System Design Descriptions. EA also reviewed 15 SDDs for various nuclear systems at ATR and MFC. The requirements in LWP-10105 were followed, and the SDDs adequately described the intended safety systems. Most of the SDDs were current; however, a few
had not been updated in eight years. Section 5.2 of this report notes that two SDDs affected by design changes had not been updated as required.

Some of the SDDs contain color photographs and figures to clarify key attributes of complex components and system arrangements that might not be readily apparent without entering a radiological area, supporting minimization of personnel exposure in these areas.

A recent procedure revision was made by BEA to clarify the quality level of the individual components of a safety system through the addition of a table of safety significant critical components. Although only a few examples were available for review, this practice supports successful procurement of system components by focusing quality assurance on the critical components.

Engineering Change Control

LWP-10501 (laboratory-wide) and SP-30.1.2 (MFC-specific) define the design change control process for safety SSCs, as discussed in Section 5.1. Both procedures are adequate in this regard. Both procedures include provisions for partial turnover of an SSC undergoing modification to the facility manager, allowing the SSC to be returned to service even if the entire scope of the modification has not yet been completed. Section 5.2 of this report documents review of a large sample of design change packages (or EJs). Although several issues were noted, overall implementation of the design change process by BEA Engineering is adequate.

Both ATR and MFC have a designated CM engineer. This was found to be necessary, at least in part due to the fact that design change packages are not scanned into the electronic document management system (EDMS) after engineering approval. Change packages are kept in hardcopy in the engineering files until fully implemented and submitted for closure. Interviews with MFC Engineering personnel indicated that MFC has 10 legacy design change packages that cannot be located. Both ATR and MFC plan to implement use of Asset Suite 9 software, which will permit electronic processing of EJs. Asset Suite 9 will preserve digital copies of EJ packages during this process and, therefore, will resolve this issue in the longer term.

Engineering Document Control

LWP-1201, *Document Management*, is referenced in PDD-10000 as the vehicle for “low rigor change control;” however, neither document defines that term. LWP-1201 contains an adequate review process for documents affecting safety SSCs when changes are processed outside the LWP-10501 procedure. Both LWP-10501 and SP-30.1.2 also reference LWP-1201 as the controlling procedure for processing document updates upon EJ closure.

EA used the BEA EDMS extensively to access documents of all types. Based on this experience, it was apparent that BEA’s processes for records management are being implemented appropriately. Only one exception was noted, as discussed in the paragraph regarding the use of hardcopy EJ packages under Engineering Change Control above.

Assessments

Both ATR and MFC rely on the cognizant system engineering function to assess CM. PDD-10502 calls for assessments but they are limited to system functionality. The periodic system walkdowns performed by cognizant system engineers to support the system health reporting process help to validate the physical configuration of ATR and MFC. ATR also implements a rotational five-year as-built process for essential drawings, helping validate the scope over each such period. This approach complies with the requirement
for system assessments in DOE Order 420.1C, Attachment 2, Chapter V, Paragraph 3.c, but does not accomplish the assessment function defined in DOE STD-1073-2003. Other aspects of CM, such as design change control and document control, are not assessed periodically at either ATR or MFC. (Deficiency)

Configuration Management Conclusions

The technical baseline is well documented and meets DOE expectations. Overall implementation of the design change control and documentation control processes by BEA Engineering is adequate. However, BEA is not adequately implementing the assessment process as defined in DOE STD-1073-2003.

5.4 Issues Management and Performance Monitoring Within the Engineering Organization

Engineering often has a key role in identifying problems, determining the needed corrective actions, and implementing those actions through the engineering change process. This section discusses EA’s assessment of BEA’s implementation of issues management and performance assessment processes to improve its performance.

Objective:

Programs and processes are in place to identify and correct problems, ensure that personnel are appropriately trained and qualified, and assess internal performance, identifying lessons learned and implementing appropriate corrective actions. (10 CFR 830)

Criteria:

- Internal assessments are performed on a periodic basis to examine performance with regard to procedural and programmatic requirements. Assessors are independent of the area being examined. Lessons learned are identified and communicated to engineering personnel. Identified problems are documented using the contractor assurance system and tracked to completion of corrective actions. (10 CFR 830)

- An effective contractor assurance process is in place wherein problems are identified and corrective actions are determined and accomplished in a timely manner. Corrective actions are effective in addressing both the extent of condition of the identified problem and recurrence control. (10 CFR 830)

Issues Management

BEA manages issues in accordance with LWP-13840, Issues Management, which appropriately covers identification, analysis, and correction of a broad range of workplace problems. A software tool, LabWay, is used by BEA to support the issues management process. When an employee enters an identified issue into LabWay, a “condition report” is generated.

EA assessed issues management within the engineering organization by examining a sample of 24 condition reports in which engineering played a role in either the initiation or resolution of the condition to determine whether:

- Issues were identified and documented in LabWay, exhibiting a willingness on the part of engineering personnel to report problems.
Corrective actions developed in response to identified issues were adequate to correct the problem.

The condition reports covered a range of topics, such as:

- Requesting engineering to determine whether a pump could still be considered operable if the ventilation fan for the pump house were out-of-service.
- Updating drawings, revising analyses to reflect as-installed configurations, and correcting SDD references that had been superseded.
- Troubleshooting a reactor safety rod that failed to fully insert on a SCRAM.
- Confirming that diesel fuel oil for a safety-related fire pump met consensus standards.

The last item from the above list, relating to the diesel fuel for the ATR safety-related fire pump, was originally identified by BEA Nuclear Assurance. Although BEA appropriately added periodic testing of the fuel to the schedule, the analysis of the existing fuel took months to accomplish, resulting in a second condition report for lack of timely resolution. When BEA finally obtained the sample and had it analyzed, the analysis showed the fuel to be within prescribed limits for acceptability. EA noted that no operability evaluation was performed for the safety-related fire pump while this condition existed. The reactor was not operated during the time that the fuel quality was indeterminate.

EA concluded that:

- The issues identified in the condition reports reflect a reasonable cross section of issues with varied significance levels, indicating an apparent willingness to identify issues of even minor significance. This contributes to the efficacy of the corrective action process and its ability to support the identification of problem and performance trends.
- The corrective actions specified for the reported problems are generally sufficient to correct those problems.
- Corrective actions are generally accomplished in a timely manner commensurate with the significance of the reported problem.

Performance Monitoring and Assessment

Independent assessment of work performance is required by 10 CFR 830, Subpart A, paragraph 830.122(j). BEA procedure LWP-13730, *Performance Assurance and Assessment*, describes an adequate process for scheduling and performing risk-informed or required assessments. The procedure is focused on BEA “Mission Centers” (e.g., ATR and MFC) and laboratory-wide supporting organizations. With the reorganization of the engineering organization, ATR and MFC engineering are included with their mission centers, while the centralized engineering group is considered a supporting organization. Procedure LWP-13730 also applies to assessments performed by the quality assurance organization.

In the last two years, BEA Engineering completed a single assessment report documenting an evaluation of the EJ backlog at MFC: ASMT 2016-0706, *MFC EJ Assessment*. The assessment resulted in closing or cancelling many old EJs that MFC Engineering appropriately concluded would not be implemented.
ATR and MFC Engineering have no formal mechanism or schedule in place to implement their self-assessment process. Prior to the reorganization of BEA Engineering, a formal assessment program existed. MFC does conduct an observation program for the Mission Center as a whole that provides limited feedback, but the observations are often focused on performance of physical work or on short term activities, rather than on the quality of engineering products.

There is also no program for routine performance assessments of common engineering activities, such as the development of calculations, design change packages, or procurement specifications by organizations outside of Engineering. Assessments performed by BEA Nuclear Assurance were generally characterized as in-depth looks at problems identified by other means or in response to an event at a facility, generally focusing on that event. Quality Assurance has performed assessments of engineering performance, which included design control within the assessment scope; however, the most recent assessment of design control was found in ASMT 2016-0782, *Audit of INL QA Program Implementation at ATR No. 2*. No issues were identified in that assessment.

Based on the information provided in this area, BEA is not adequately assessing work performance within the Engineering organization. (Deficiency) BEA generated condition report CO-2018-0833, *Engineering Annual Assessments*, to document and resolve this issue.

EA also examined 15 construction field problems (CFPs) to determine whether or not BEA’s engineering products were effectively communicating the design intent to the construction workforce. EA concluded that 5 of the 15 CFPs were written to resolve inadequacies in the original engineering products:

- **CFP-3, Chemical Inventory Submittals**, was created because chemical inventories were not specified on vendor data schedules.
- **CFP-04, In-service Fire Suppression Testing**, was created because an engineering drawing specified a test that was not included by engineering on the vendor data schedule.
- **CFP-18, Shielded Container Stand(s)**, was created because the stands were depicted differently on different drawings. One drawing incorrectly depicted leveling feet, while another drawing correctly depicted anchor pads.
- **CFP-22, Shield Wall Connection Plates**, was created to resolve interferences overlooked in the design.
- **CFP-44, Piping Regulators**, was created because the originally specified regulators would not allow the system to function as designed, nor meet code requirements.

Issues Management and Performance Monitoring Conclusions

The issues management process used by BEA is effective at identifying, analyzing, and correcting issues, including issues identified by engineering and issues that engineering helps to resolve. The performance monitoring and assessment process is not effective, with no internal engineering self-assessment process and limited external assessments. Physical conditions are assessed as part of the system health reporting process, but these activities do not examine the implementation of engineering work processes.
5.5 Engineering Procurement

Engineering supports the procurement process by establishing technical requirements as outlined below. Those requirements establish minimum standards for equipment performance and ensure compliance with the safety basis.

Objective:

Design engineering work is performed consistent with technical standards, DOE requirements, and safety basis requirements and commitments, using approved procedures and sound engineering/scientific principles in accordance with the requirements of 10 CFR 830.

Criteria:

Engineering procedures for procurement specifications are in place and contain appropriate detail to control development, approval, issuance, and revision. Specifications for equipment procurement adequately reflect:

- Design criteria and safety basis functional and performance requirements
- Technical requirements, including reference to applicable drawings and industry codes and standards
- Safety classification
- Quality requirements
- Environmental qualification criteria
- Labeling criteria
- Test, inspection, and acceptance criteria. (10 CFR 830)

BEA’s engineering procurement is performed in accordance with LWP-4001, Acquisition of Materials and Services. BEA develops specifications for both procurement and construction in accordance with LWP-10101, Specifications. Electronic templates are available for general specifications and construction specifications. Construction specifications appropriately use the Construction Standards Institute format. General specifications are used for engineered items.

EA examined 19 specifications to determine whether both processes were being implemented properly and effectively. All engineered item specifications within the sampled population contained appropriate references to applicable national codes and standards, quality requirements, design criteria, performance requirements to ensure the items would be suitable for their intended function, and requirements for testing, inspection, and acceptance. Labeling and shipping criteria were likewise included to prevent misidentification of items and ensure that items were protected from damage during shipping.

Construction specifications reviewed by EA appropriately contained relevant Construction Standards Institute-formatted and -numbered sections to define suitable consensus codes and standards for specific portions of the construction work (nitrogen piping installation, miscellaneous steel framing erection, etc.). Documentation and inspection requirements were appropriately incorporated in the specifications, and quality assurance requirements were adequately defined. EA found no issues with the construction specifications.

Quality levels for items to be procured are assigned by the BEA system engineer using a graded approach in accordance with LWP-13014, Determining Quality Levels. BEA recently revised the quality level designation process to clarify the level determination and eliminate inconsistencies found with the
previous process. The new procedure appropriately uses the terms “nuclear use,” “commercial use,” or “general use” to designate the required level of quality assurance for materials and equipment.

LWP-10109, Commercial Grade Dedication, describes the dedication process applied when commercial items are used in safety-related applications. An electronic template, TEM-10109, Template for a Commercial Dedication Plan, is available to ensure that all required information is provided. EA examined commercial grade dedication plans for a variety of items and confirmed that the plans appropriately defined the salient features of the items that would impact their suitability for the intended service. All of the plans that EA reviewed correctly described the safety functions that the item would need to perform, as well as the applicable service conditions. Critical characteristics were then appropriately described, along with the suitable examination or testing method(s) for verifying the acceptance criteria. EA did not identify any issues with the commercial grade dedication plans.

Engineering Procurement Conclusions

EA identified no issues with the aspects of the procurement process examined in this assessment, including specification development, quality level determination, and commercial grade dedication.

6.0 FINDINGS

EA did not identify any findings during this assessment. Deficiencies that did not meet the criteria for a finding are listed in Appendix C of this report, with the expectation from DOE Order 227.1A for site managers to apply their local issues management processes for resolution.

7.0 OPPORTUNITIES FOR IMPROVEMENT

EA identified some OFIs to assist cognizant managers in improving programs and operations. While OFIs may identify potential solutions to findings and deficiencies identified in appraisal reports, they may also address other conditions observed during the appraisal process. EA offers these OFIs only as recommendations for line management consideration; they do not require formal resolution by management through a corrective action process and are not intended to be prescriptive or mandatory. Rather, they are suggestions that may assist site management in implementing best practices or provide potential solutions to issues identified during the assessment.

Battelle Energy Alliance, LLC

OFI-BEA-1: Consider revising PDD-10000 to explain the differences between low rigor change control and high rigor change control and where each would be applicable within the engineering process.
Appendix A
Supplemental Information

Dates of Assessment

Onsite Assessment: March 19, 2018 – April 12, 2018

Office of Enterprise Assessments Management

William A. Eckroade, Acting Director, Office of Enterprise Assessments
Thomas R. Staker, Director, Office of Environment, Safety and Health Assessments
William E. Miller, Deputy Director, Office of Environment, Safety and Health Assessments
C.E. (Gene) Carpenter, Jr., Director, Office of Nuclear Safety and Environmental Assessments
Kevin G. Kilp, Director, Office of Worker Safety and Health Assessments
Gerald M. McAteer, Director, Office of Emergency Management Assessments

Quality Review Board

John S. Boulden III
Steven C. Simonson
Michael A. Kilpatrick

EA Site Lead for INL

Rosemary B. Reeves

EA Assessors

Charles R. Allen – Lead
Rosemary B. Reeves
Sarah C. Rich
Gregory D. Teese
Kenneth L. Johnson
Appendix B

Key Documents Reviewed, Interviews, and Observations

Documents Reviewed

AL-2016-004, ALARA Review of L&O Work in HCA and CA Gloveboxes and Transfer Ports, Revision 3, 3/3/2018
AL-S17-012, Airflow Pattern Data for B-141 CNO Glovebox and Hoods, Revision 0, 7/12/2017
AL-S18-001, Airflow Pattern Data for B-137, B-141, B-142, B-148, and B-154, Revision 0, 1/3/2018
ASMT 2017-0333, IMCL CORR for High Rad Rate Samples, Revision 0, 7/12/2017
ASMT 2016-0781, Audit of INL QA Program Implementation at ATR No. 1, Revision 0, 8/23/2017
ASMT 2016-0782, Audit of INL QA Program Implementation at ATR No. 2, Revision 1, 11/2/2017
ATR Complex-USQ-2013-514, EJ-7.4.11.3-1/1340, ATR Canal Ion Exchange System Replacement, Revision 0, 10/30/2013
ATR Complex-USQ-2014-160, ATR Canal Ion Exchange System Replacement (EJ-7.4.11.3-1/1340 and EJ-7.4.11.3-2/1454), Revision 0, 4/1/2014
ATR Complex-USQ-2015-343, AGR-5/6/7 Supplemental Instrumentation (EJ-1916), Revision 0, 9/22/2015
ATR Complex-USQ-2015-514, Remove Code Rejection Plates from ATR Primary Coolant Pump Motor Starters (EJ 7.3.1-35), Revision 0, 11/01/2015
ATR Complex-USQ-2016-502, Removal of Irradiated HSIS Intank Assembly EJ# 7.9.25-8/2164, Revision 0, 08/16/2016
ATR Complex-USQ-2017-063, ATR Loop 1C-W, Relief Valve Discharge Piping Modification For SF-135, 137 and 535, Revision 0, 03/01/2017
ATR Complex-USQ-2017-152, AGR-5/6/7 Supplemental Instrumentation Installation Phase Modification Checklist, Revision 0, 5/3/2017
ATR Complex-USQ-2017-331, 670-M-15 Pressurizing Pump Jackshaft Configuration Restoration, Revision 0, 9/21/2017
ASMT 2016-0706, MFC EJ Assessment, 2/23/2017
ASMT 2016-1015, MFC Maintenance Tools and Equipment Control, 12/7/2016
CFP-01, Isolation Pads, Revision 0, 7/25/2016
CFP-02, Shield Wall Joints and Bases Paint Removal, Revision 0, 7/25/2016
CFP-03, Chemical Inventory Submittals, Revision 0, 7/27/2016
CFP-04, In-service Fire Suppression Testing, Revision 0, 7/27/2016
CFP-09, Rack Location, Revision 0, 8/10/2016
CFP-11, EPMA Confinement Box stand bolting issues, Revision 0, 8/16/2016
CFP-18, Shielded Container Stand(s), Revision 0, 8/25/2016
CFP-22, Shield Wall Connection Plates, Revision 0, 8/25/2016
CFP-27, Confinement Box and Stand Bolting issues (SEM and FIB), Revision 0, 9/1/2016
CFP-42, Confinement Box Safety Significant Bolt Replacements, Revision 0, 10/10/2016
CFP-44, Piping Regulators, Revision 0, 10/11/2016
CFP-46, Booster Blower Install, Revision 0, 11/3/2016
CFP-48, Install shielding around IMCL shield wall cable penetrations, Revision 0, 2/7/2017
CFP-48r1, Install shielding around IMCL shield wall cable penetration for the EPMA only, Revision 1, 3/22/2017
CFP-49, Broken Taps, Revision 0, 5/8/2017
CGI-842, FMF Glovebox Secondary Control System for NRG and TBG, Revision 1, 1/13/2016
CGI-843, FMF Glovebox Transfer Ports for NRG and TBG, Revision 0, 1/06/2016
CGI-897, ATR Emergency Coolant Pump Dedication Plan, Revision 0, 8/16/2016
CGI-946, Turbo, TRA-688 Diesel Fire Pump Engine, Revision 0, 9/27/2017
CGI-964, ATR Deepwell #1 Pumping System Replacement, Revision 0, 8/29/2017
CO-2016-3252, Seismic Evaluation for 670-E-26, Revision 0, 5/9/2017
CO-2017-0024, ATR Primary Coolant Valve Check Parts WR 15-397, Revision 0, 10/5/2017
CO-2017-0097, South Safety Rod failed to insert on scram, Revision 0, 10/4/2017
CO-2017-0371, ATR Complex Warm Waste Treatment Facility, Revision 0, 10/3/2017
CO 2017-0502, AHTL Experiment Pressurized Water Loop 1C-W, Revision 0, 03/15/2017
CO-2017-0574, ATR 6-ton Crane Install, 6/6/2017
CO-2017-0645, ATR 688-M-2 Firewater Pump Inoperable, Revision 0, 4/27/2017
CO-2017-0752, Failure to test diesel fuel AWNFPA 25 8.3.4, Revision 0, 10/4/2017
CO-2017-0990, Needed engineering evaluation for DOP 8.3.1, Revision 0, 7/5/2017
CO-2017-1106, ATR Prescreen members’ job code, Revision 0, 6/21/2017
CO 2017-1198, Pre Start 7.1-1 IMCL Thermal Analysis, Revision 0, 05/31/2017
CO-2017-1323, South Safety Rod did not insert on SCRAM, Revision 0, 8/22/2017
CO 2017-1526, IMCL CORR - Pre-Start Finding 8.1-1, Revision 0, 10/30/2017
CO-2017-1624, Failure to complete commercial grade dedication 688-M-2, Revision 0, 10/25/2017
CO-2017-1625, Actions to Analyze ATR Diesel Fuel not Timely, Revision 0, 10/19/2017
CO-2017-2201, ATR HVA-2 Confinement Breach, Revision 0, 9/10/2017
CO-2017-2526, Confinement Delay on DCS not set, Revision 0, 10/25/2017
CO-2017-3089, TRA-601-HVE-1 is out-of-service, Revision 0, 2/19/2018
CO-2018-0763, ECARs need revision, Revision 0, 4/2/2018
CO-2018-0823, EJ#2061 Deficiencies, Revision 0, 4/10/2018
CO-2018-0831, Validating Engineering Assumptions, Revision 0, 4/11/2018
CO-2018-0832, Safety SSC Identification on Drawings, Revision 0, 4/11/2018
CO-2018-0833, Engineering Annual Assessments, Revision 0, 4/11/2018
CO-2018-0908, Incorrect Breaker Trip Settings, Revision 0, 4/19/2018
DCN-1701-E1-01, IMCL – EPMA and FIB, Revision 0, 2/8/2018
DCN-EJ2194-E1-01, IMCL-1729 SAS Floor Sealing and Feed-Through Fire Protection and Shielding, Revision 0, 11/04/2017
Drawing 011149, ATR Complex Bldg 653 Maintenance Building and TRA 662 Warehouse One Line Power Diagram, Revision 28, 7/13/2016
Drawing 156516, ATR Canal Recycle Ion Exchange Flow Display Panel Wiring Diagram, Revision 5, 10/19/2017
Drawing 156516, ATR Canal Recycle Ion Exchange Flow Display Panel Wiring Diagram, Revision 5, 10/19/2017
Drawing 182382, INTEC CPP_651 One Line Diagram, Revision 8, 6/27/2016
Drawing 335739, ATR Reactor Top Terminal Box TBX-MS-3678, Revision 16, 2/13/2018
Drawing 413453, ATR AHTL Cubicle 1C-W Hanger Installation and Details (Cubicle 1C-W), Revision 14, 08/29/2017
Drawing 413453, ATR AHTL Cubicle 1C-W Relief Piping First Basement Layout, Revision 7, 08/29/2017
Drawing 418330, ATR Electrical Distribution Lighting Panels, Revision 58, 10/19/2017
Drawing 445223, ATR Complex Bldg 653 Maintenance Shop Electrical Panel Schedules, Revision 10, 11/4/2015
Drawing 805243, MFC 1729 FIB/SEM Shield Walls Lip, Revision 0, 12/15/2016
Drawing 805594, Shielded Container and Transfer Cart, Shielded Container Assembly, Revision 3, 3/30/2017
Drawing 805595, Shielded Container and Transfer Cart, Container Outer Shield Weldment, Revision 5, 3/30/2017
Drawing 805596, Shielded Container and Transfer Cart, Internal Tube Weldment, Revision 4, 3/30/2017
Drawing 805597, Shielded Container and Transfer Cart, Nose Outer Sleeve, Revision 3, 3/30/2017
Drawing 805598, Shielded Container and Transfer Cart, Cover Sheet, Revision 3, 3/30/2017
Drawing 805599, Shielded Container and Transfer Cart, Bearing Collar, Revision 3, 3/30/2017
Drawing 805600, Shielded Container and Transfer Cart, Body Outer Sleeve, Revision 3, 3/30/2017
Drawing 805601, Shielded Container and Transfer Cart, Lifting Strap Mounting Block, Back, Revision 3, 3/30/2017
Drawing 805602, Shielded Container and Transfer Cart, Lifting Strap Mounting Block, Front, Revision 3, 3/30/2017
Drawing 805603, Shielded Container and Transfer Cart, Roller Pan, Revision 3, 3/30/2017
Drawing 805604, Shielded Container and Transfer Cart, Bottom Support Bar, Revision 3, 3/30/2017
Drawing 805605, Shielded Container and Transfer Cart, Bottom Tap Bar, Revision 3, 3/30/2017
Drawing 805606, Shielded Container and Transfer Cart, Lift Bail Stop Block, Revision 3, 3/30/2017
Drawing 805607, Shielded Container and Transfer Cart, Main Load Support Plate, Revision 3, 3/30/2017
Drawing 805608, Shielded Container and Transfer Cart, Bottom Cover Sheet, Revision 3, 3/30/2017
Drawing 805609, Shielded Container and Transfer Cart, Lead Cover Sleeve, Revision 3, 3/30/2017
Drawing 805610, Shielded Container and Transfer Cart, Tapered Load Support Plate, Revision 3, 3/30/2017
Drawing 805611, Shielded Container and Transfer Cart, Load Support Plate, Revision 3, 3/30/2017
Drawing 805612, Shielded Container and Transfer Cart, Stepped Load Support Plate, Revision 3, 3/30/2017
Drawing 805613, Shielded Container and Transfer Cart, Middle Lead Cover Sleeve, Revision 3, 3/30/2017
Drawing 805614, Shielded Container and Transfer Cart, End Cover Plate, Revision 3, 3/30/2017
Drawing 805615, Shielded Container and Transfer Cart, Support Strut, Revision 2, 3/30/2017
Drawing 805616, Shielded Container and Transfer Cart, Shielded Container Transfer Carrier, Revision 3, 3/30/2017
Drawing 805617, Shielded Container and Transfer Cart, Transfer Carrier Weldment, Revision 4, 3/30/2017
Drawing 805618, Shielded Container and Transfer Cart, Latch Assembly, Revision 3, 3/30/2017
Drawing 805619, Shielded Container and Transfer Cart, Latch Body, Revision 3, 3/30/2017
Drawing 805620, Shielded Container and Transfer Cart, Latch Paw, Revision 3, 3/30/2017
Drawing 805621, Shielded Container and Transfer Cart, Latch Handle, Revision 3, 3/30/2017
Drawing 805622, Shielded Container and Transfer Cart, Shim Plate, Revision 2, 3/30/2017
Drawing 805623, Shielded Container and Transfer Cart, Beta-Port Coupling, Revision 3, 3/30/2017
Drawing 805624, Shielded Container and Transfer Cart, Pig Cask Lifting Bracket, Revision 2, 3/30/2017
Drawing 805625, Shielded Container and Transfer Cart, Dual-Vee Wheel Mounting Bar, Revision 2, 3/30/2017
Drawing 805626, Shielded Container and Transfer Cart, Beta-Port Coupling Handle, Revision 2, 3/30/2017
Drawing 805627, Shielded Container and Transfer Cart, Bushing, Revision 2, 3/30/2017
Drawing 805628, Shielded Container and Transfer Cart, Cam Follower Mounting Bar, Revision 2, 3/30/2017
Drawing 805629, Shielded Container and Transfer Cart, Beta-Port Coupling Gasket, Revision 2, 3/30/2017
ECAR-2758, Pressure Safety Valve, 9975 Evacuation and Backfill Line, Revision 1, 9/10/2015
ECAR-2820, Calculation of Nozzle Loads for ATR Loop 1C-W Safety Relief Valves 1C-SF-135, 1C-SF-535, & 1C-SF-137, Revision 0, 03/29/2017
ECAR-2867, ALARA Design Review of the CNO Analysis Support System, Revision 0, 6/3/2015
ECAR-2964, MFC-IMCL SSPA Glovebox/Hood/STC Floor Analysis, Revision 0, 8/6/2015
ECAR-3138, SSPA and STC Pig Stand Structural Analysis, Revision 0, 3/11/2016
ECAR-3245, SSPAS Fire Assessment, Revision 1, 6/26/2017
ECAR-3456, EPMA Approved Confinement Structural Evaluation, Revision 0, 10/12/2016
ECAR-3462, FIB and SEM Approved Confinement Structural Evaluation, Revision 1, 10/2/2017
ECAR-3523, IMCL EPMA Shielding System and Sample Storage Pocket Shielding Analysis with Co-60 and Cs-137, Revision 0, 12/15/2016
ECAR-3524, MFC-785 HFEF MEAAL 3633.00 – Leak Testing Normal Cell Exhaust System Piping from Exhaust Valves to Seal Pot SP-1, Revision 0, 11/28/2016
ECAR-3549, IMCL – ALARA Design Review for the EPMA in IMCL at MFC (Includes FIB and SEM [PFIB]), Revision 1, 2/23/2017
ECAR-3550, MFC-1729 IMCL MEAAL 2540/2570 – EJ-1701/1801 Piping Analysis, Revision 0, 12/19/2016
ECAR-3581, MFC Inter-Facility Transfer of Radioactive Materials in the IMCL Shielded Container (ISC), Revision 0, 3/4/2017
ECAR-3625, Pressure and Mass Flow Analysis for ATR Loop 1C-W Piping, Revision 0, 03/28/2017
ECAR-3711, MFC-1729 IMCL MEAAL-6210 SSPA Design Calculations Verification Analysis, Revision 0, 5/11/2017
ECAR-3745, MFC-1729 IMCL MEAAL 5210 – Coefficient of Friction Between EPMA and Floor, Revision 0, 6/6/2017
ECAR-3764, MFC-752AL Hot Cells 5 and 6 Shielding Modification, Revision 0, 7/27/2017
ECAR-3787, ISC Seismic Loading on EPMA, FIC, and SEM Confinement Boxes, Revision 0, 7/12/2017
ECAR-3961, MFC-752AL Pressure Relief Device Analysis for the O2 Line of the CNO Glovebox (AL-2100), Revision 1, 2/21/2018
eCR-602269, ATR NGNP test Extension Cable Assembly and Details, Revision 0, 5/4/2011
eCR-616013, Revise Drawing 724027, Revision 0, 11/4/2013
eCR-626733, TFR-700, Technical and Functional Requirements for the EML Shielded Cells, Revision 1, Revision 0, 12/1/2014
eCR-627533, Revise Drawing 724027, Revision 0, 12/3/2014
eCR-627628, Revise Drawing 724027, Revision 0, 1/13/2015
eCR-629356, AGR-567 Brazing details, Revision 0, 3/10/2015
eCR-631589, Revise Drawings for EJ-8.5-165, Revision 0, 5/11/2015
eCR-634662, Revise Drawings for EJs-1793, 1812, 1813 & 1971, Revision 0, 11/3/2015
eCR-636964, Revise Drawings for EJ-8.2.44, Revision 0, 12/16/2015
eCR-637476, Cancel TFR-804 Technical and Functional Requirements FMF Breakout Gloveboxes, Revision 0, 1/5/2016
eCR-640112, Revise Drawings for EJ-7.9.18-35, Revision 0, 4/14/2016
eCR-642123, Revise Drawings for EJ-7.9.18-34, Revision 0, 3/8/2017
eCR-642605, TEV-2158, MFC-1729 SSPA In Cell Equipment, Revision 1, Revision 0, 8/2/2016
eCR-642694, Revise Drawings for EJ-7.9.18-34, Revision 0, 8/9/2016
eCR-644759, Revise Drawings for EJ-7.9.18-34, Revision 0, 12/7/2016
eCR-646123, Revise Drawings for EJ-7.9.18-35, Revision 0, 3/8/2017
eCR-648096, HTIR Thermocouples for AGR-5/6/7, Revision 0, 2/27/2017
eCR-648652, HTIR-TC Fabrication Process for AGR 5/6/7, Revision 0, 3/20/2017
eCR-652412, Revise Drawings for EJ-7.9.18-34, Revision 0, 8/2/2017
eCR-652466, Revise Drawings for EJ-8.5-165, Revision 0, 8/15/2017
eCR-656265, Revise Drawings for EJ-7.9.18-34, Revision 0, 2/13/2018
EDF-5711, ATR Firewater Pump Controller Accuracy for the Firetrol FTA-1100DL Controller, Revision 0, 3/11/2005
EDF-8324, TRA-670 Pressurizing Pump Replacement Jack- Shaft Analysis, Revision 0, 8/1/2007
EJ 7.0-11/1010, Seismic Upgrade for ATR Control Room Masonry Partition Walls, Revision 0, 1/17/2013
EJ 7.3.1-35, Install Vacuum Motor Starters into 670-E-1 Cubicles 3 and 4 and 670-E-2 Cubicles 9 and 10, Revision 0, 12/11/2014
EJ-7.4.1.6.1-5/2431, 670-M-15 Pressurizing Pump Jackshaft Configuration Restoration, Revision 0, 9/26/2017
EJ-7.4.11.3-1/1340, ATR Canal Ion Exchange System Replacement – Electrical, Revision 0, 10/24/2017
EJ-7.4.11.3-2/1454, ATR Canal Ion Exchange System Replacement – Mechanical, Revision 0, 4/4/2017
EJ 7.9.2-28, ID-N Asbestos Abatement, 2/7/2018
EJ 7.9.12-92, ATR Loop 1 C-W, Relief Valve Discharge Piping Modification For SF-135, 137 and 535, Revision 0, 09/18/2017
EJ-7.9.18-35/2029, AGR-5/6/7 DCS Screen Build and Thermocouples, Revision 0, 2/22/2018
EJ-7.9.18-34/1916, AGR-5/6/7 Supplemental Instrumentation, Revision 0, 2/22/2018
EJ 7.9.25-8, Removal Of Irradiated HSIS Intank Assembly From ATR Reactor Vessel, Revision 0, 09/12/2016
EJ-8.2-44/1183, TRA-653 Air Compressor Installation, Revision 0, 6/29/2017
EJ-8.5-165/2346, Install Power Supply for TRA-786-E-8 Motor Protection Relay for Deepwell Number 3, Revision 0, 8/6/2017
EJ-431, CNO Glovebox, Revision 0, 3/8/2016
EJ-1071, ZPPR Roof Repair, Revision 0, 6/26/2017
EJ-1135, MEAAL 3157.00 HFEF Glovebox Overhead Monorail Hoist Installation, Revision 0, 5/15/2017
EJ-1199, ZPPR Transuranic Glovebox and Facility Modifications, Revision 0, 5/2/2017
EJ-1260, EFF Glovebox and Hood Installation, Revision 0, 6/19/2017
EJ-1471, SSPA Glovebox and Hood Installation, Revision 0, 5/15/2017
EJ-1491, ZPPR Vault Material Storage, Revision 0, 3/29/2017
EJ-1555, MEAAL 3157.00 HFEF Glovebox Corrosion Resistant Monorail Installation, Revision 0, 5/15/2017
EJ-1559, Neptunium Container (9975) Repackaging Process Equipment and Tooling, Revision 0, 8/3/2016
EJ-1647, Overcurrent Protection for XFR-YDC-232, Revision 0, 6/29/2016
EJ-1695, MFC-754 Modification of Potable/Fire water Tank Level & Water Distribution Controls, Revision 0, 8/2/2017
EJ-1701, IMCL – EPMA and FIB Confinement Boxes, Shield Walls, Shielded Container, and Shielded Container Transfer Cart, Revision 0, 3/7/2018
EJ-1758, HEU Glovebox Removal, Revision 0, 3/30/2016
EJ-1784, CNO Glovebox Installation and Testing, Revision 0, 9/27/2017
EJ-1793, Static Trip III Replacement for Substation 786 North Main Breaker 1-2, Revision 0, 5/19/2016
EJ-1812, Static Trip III Replacement for Substation 786 South Main Breaker 5-2, Revision 0, 5/19/2016
EJ-1813, Static Trip III Replacement for Substation 786 Tie Breaker 3-2, Revision 0, 5/19/2016
EJ-1830, 5M HFEF Main Cell Electrical Feedthrough Replacement (Penetration No. 8.1016), Revision 0, 7/27/2017
EJ-1846, ZPPR Ventilation System, Differential Pressure Monitoring System, and Radiation Monitoring System Upgrades, Revision 0, 07/25/2017
EJ-1867, GGE Glovebox Removal, Revision 0, 3/29/2017
EJ-1919, 9975 Repackaging Tooling and Process Equipment Upgrades, Revision 0, 8/3/2016
EJ-1971, Static Trip III Replacement for Substation 786 Feeder Breakers, Revision 0, 4/27/2017
EJ-2031, Remove Cask-Tunnel-Area Glovebox (MEAAL 3131.00), Revision 0, 7/19/2017
EJ-2044, ZPPR Clamshell Overpack, Revision 0, 8/29/2017
LWP-13730, Performance Assurance and Assessment, Revision 8, 7/26/2016
LWP-13735, INL Management Observation Program, Revision 1, 1/30/2015
LWP-13840, Issues Management, Revision 10, 9/25/2017
MFC-ATP-0060, Experimental Fuels Facility MFC-794 High Density Fuel Glovebox Checkout and Test, Revision 0, 9/8/2015
MFC-ATP-0063, IMCL Shielded Sample Preparation Area Glovebox (SSPAG) and Shielded Transfer Cell (STC) Acceptance Testing, Revision 1, 8/1/2016
MFC-ATP-0085, Experimental Fuels Facility MFC-794 High Density Fuels Glovebox Test and Restart, Revision 0, 2/22/2018
MFC-USQ-2012-327, EJ-1071, ZPPR Roof Repair, Revision 0, 5/3/2012
MFC-USQ-2012-894, EJ-1135, MEAAL 3157.00 HFEF Glovebox Overhead Monorail Hoist Installation, Revision 0, 9/12/2012
MFC-USQ-2012-920, Evaluate EJ-291, EJ-1071 and EJ-1073 against DSA-006-ZPPR, Revision 8, Revision 0, 9/12/2012
MFC-USQ-2014-697, EJ-1071, ZPPR Roof Repair, Revision 0, 6/17/2014
MFC-USQ-2014-800, EJ-1555, MEAAL 3157.00 HFEF Glovebox Corrosion Resistant Monorail Installation, Revision 0, 7/17/2014
MFC-USQ-2015-425, EJ-1758 HEU Glovebox Removal, Revision 0, 4/14/2015
MFC-USQ-2015-488, EJ-1830 Main Cell Electrical Feedthrough Replacement (Penetration 8.1016), Revision 0, 4/28/2015
MFC-USQ-2015-614, EJ-1784, CNO Glovebox Installation and Testing, Revision 0, 6/1/2015
MFC-USQ-2015-674, EJ-1831, 7M Main Cell Electrical Feedthrough Replacement - Penetration 8.1002, eCR-630966, Revision 0, 6/9/2015
MFC-USQ-2015-768, EJ-1867 GGE Glovebox Removal, Revision 0, 6/30/2015
MFC-USQ-2015-979, RSAP-001 rev 4, Shielded Sample Preparation Area (SSPA) System, Revision 0, 8/7/2015
MFC-USQ-2015-1024, EJ-1471 SSPA Hood, Glovebox, and STC Installation, Revision 0, 8/17/2015
MFC-USQ-2015-1044, Rigging and lift plan for IMCL STC (Shielded Transfer Cell) and glovebox, IMCL-1729, rev. 0, Revision 0, 8/20/2015
MFC-USQ-2015-1080, EJ-1919, 9975 Repackaging Tooling and Process Equipment Updates in FMF, Revision 0, 8/31/2015
MFC-USQ-2015-1144, Fabricate Flanges for HEPA Filter Housing Modification to Support CNO Glovebox, Revision 0, 9/15/2015
MFC-USQ-2016-322, Revise Drawings 775801 and 775802 per eCR 638705 and issue EJ-2044 to replace EJ-1073 which was lost, Revision 0, 3/30/2016
MFC-USQ-2016-348, EJ-1701 “IMCL – EPMA and FIC Confinement Boxes, Shield Walls, Shielded Container and Shielded Container Transfer Cart”, Revision 0, 4/11/2016
MFC-USQ-2016-379, RSAP-007 revision 0, “Electron Probe Micro Analyzer (EPMA) Sample Analysis Station”, Revision 0, 4/20/2016
MFC-USQ-2016-407, eCR 640076, Revise Clamshell Overpack Drawings (775801, 775802, 775803, 775804), Revision 0, 4/25/2016
MFC-USQ-2016-459, RSAP-006 revision 0, “Focused Ion Beam (FIB) Sample Analysis Station”, Revision 0, 5/12/2016
MFC-USQ-2016-539, WO 228798, 1729 – SSPA Glovebox Sample Pump Control Modification, EJ-1471, Revision 0, 6/2/2016
MFC-USQ-2016-545, Partial Turnover of EJ-1846, ZPPR Ventilation System, Differential Pressure Monitoring System, and Radiation Monitoring System Upgrades, Revision 0, 06/02/2016
MFC-USQ-2016-651, EJ-2031, Remove Cask-Tunnel-Area Glovebox (MEAAL 3131.00); eCR 639716 (drawing 730116) and WO 201736, Revision 0, 7/18/2016
MFC-USQ-2016-850, CFP-024 FIB and EPMA Equipement [sic] Rack Locations Changes, Revision 0, 9/6/2016
MFC-USQ-2016-984, Incorrect SAR-405 Revision Number Referenced in the following USQs: MFC-USQ-2016-720, 651,673, 674, 680, 681, 684, Revision 0, 10/11/2016
MFC-USQ-2016-989, SAR/TSR-401 Rev. 3 Implementation, Open Engineering Job (EJs) Review, Revision 0, 10/10/2016
MFC-USQ-2016-1103, Revise DWG 775801 and DWG 775804 per eCR 644926, Revision 0, 11/15/2016
MFC-USQ-2017-231, Add Part 50 “Outside Cover Plate” to the IMCL Shield Wall Drawing Assembly Drawing 795325 to Restrain the FIB and SEM Floor-Level Cut-Out Plugs, Revision 0, 3/15/2017
MFC-USQ-2017-248, EJ-2242 – IMCL Shielded Container Number 2, Revision 0, 3/27/2017
MFC-USQ-2017-297, TEM Environmental Room Modification, Revision 0, 4/5/2017
MFC-USQ-2017-365, CFP-49 for Broken Tap on EPMA Cable Shielding Feed Through Installation, Revision 0, 4/13/2017
MFC-USQ-2017-683, Open EJ review for IMCL SAR/TSR-418 Rev 3 Implementation, Revision 0, 07/11/2017
MFC-USQ-2017-798, EJ-2194 Design Change Notice No. 1, Revision 0, 8/10/2017
MFC-USQ-2017-801, Element #9 of EJ-2061, AFC/ATF Examination Fixtures and attached sketch titled “Eddy Current Extension for ATF-1 Rodlet (rev1)”, Revision 0, 8/8/2017
MFC-USQ-2016-891, CFP-022 FIB West Wall Tie-Plate Cut-Down and Shortening Shield Wall Studs, Revision 0, 9/19/2016
MFC-USQ-2017-914, EJ-2061, Element 10: AFC/ATF Examination Fixtures, Revision 0, 9/25/2017
MFC-USQ-2018-148, DCN-1701-E1-01, Revision 0, 2/14/2018
PDD-10000, Conduct of Engineering, Revision 7, 10/25/2017
PDD-10502, INL Configuration Management Program, Revision 4, 6/12/2017
PLN-4243, HFEF In-Cell Lighting Upgrades Preliminary Testing, Revision 0, 7/17/2012
PLN-4751, Postirradiation Examination Plan for ATF-1 Irradiation Experiments, Revision 1, 3/31/2015
PS-OI-61, MFC Deep Well Pump Operation, Revision 0, 2/3/2016
RCE-AL-2016-004, Radiological Control Evaluation Form, Revision 4, 11/30/2017
RCE-IMCL-2017-003, Air Monitoring During Material Transfers for ECAR-2561, Revision 0, 5/9/2017
RCE-IMCL-2017-004, EPMA Air Monitoring for ECAR-2561, Revision 0, 8/8/2017
RCE-IMCL-2018-002, FIC and SEM Air Monitoring for ECAR-2561, Revision 0, 3/14/2018
RL-S16-004, 1729 IMCL/High Bay, Revision 0, 1/13/2016
RL-S17-004, MFC-1729 IMCL, 7/12/2017
RSAP-006, Focused Ion Beam (FIB) Sample Analysis Station, Revision 0, 5/16/2016
RSAP-007, Electron Probe Micro-Analyzer (EPMA) Sample Analysis Station, Revision 0, 4/26/2016
RWP-MFC2016108, L&O – Work in HCA/CA Gloveboxes and Transfer Ports, Revision 3, 3/13/2018
SAR-153, Upgraded Final Safety Analysis Report for the Advanced Test Reactor, Revision 21, 01/25/2017
SAR-418, Safety Analysis Report for the Irradiated Materials Characterization Laboratory, Revision 3, 07/21/2017
SCMP-151, Shielded Sample Preparation Area System (SSPAS), Revision 6, 08/14/2017
SD-11.1.2, Drawing Control, Revision 4, 10/26/2011
SD-11.1.46, ATR System Interaction Hazard Control, Revision 12, 9/14/2017
SD-11.2.4, Document Control, Revision 15, 12/22/2011
SDD-7.1.6, ATR Vessel Vent System, Revision 1, 2/22/2016
SDD-7.3.1.1.1, ATR 480V Diesel Bus UPS, Revision 0, 6/17/2015
SDD-7.4.1.3, Emergency Flow Subsystem, Revision 4, 09/16/2015
SDD-7.9.12, Experiment Inpile Tube Facility ATR 1C-W, Revision 3, 01/28/1988
SDD-7.6.25, ATR Process Distributed Control System, Revision 1, 4/6/2016
SDD-7.9.25, ATR Hydraulic Shuttle Irradiation System, Revision 2, 10/20/2010
SDD-246, HFEF System Design Description for the Main and Decon Cell Shielding and Confinement
Subsystems, Revision 4, 4/13/2017
SDD-330, ZPPR Ventilation System, Revision 3, 6/22/2017
SDD-413, FMF Neptunium Repackaging and Transuranic Breakout Glovebox System Design
Description, Revision 3, 6/14/2017
SDD-477, IMCL-1729 Scanning Electron Microscope Sample Analysis Station Structure and Shielding,
Revision 1, 2/12/2018
SDD-484, IMCL-1729 EPMA SAS Structure and Shielding, Revision 1, 7/12/2017
SDD-485, IMCL-1729 Focused Ion Beam Sample Analysis Station Structure and Shielding, Revision 3,
2/12/2018
SDD-488, System Design Description MFC Fire and Potable Water System, Revision 0, 11/21/2016
SDD-489, IMCL Shielded Container, Revision 0, 10/12/2016
SDD-496, IMCL – 1729 SSPAS Passive Safety Systems, Revision 4, 10/4/2017
SP-30.1.2, MFC and TREAT Facility Modification Control, Revision 1, 3/5/2018
SPC-129, Pressure Relief Valve(s) for Advanced Test Reactor Loop 1C-W, Revision 8, 07/07/2016
SPC-1215, Software Requirements Specification ATR Capsule Distributed Control System Software,
Revision 2, 6/12/2017
SPC-1242, Electron Microscopy Laboratory (EML) Shielded Cells, Revision 0, 7/27/2010
SPC-1571, FMF Breakout Glovebox Line Design and Build, Revision 5, 3/18/2014
SPC-1589, MFC-775 (ZPPR) – TSG HEPA Filter Housing, Revision 0, 12/10/2012
SPC-1616, EFF High Density Fuel Glovebox and Fuel Fabrication Equipment Installation, Revision 0,
6/19/2013
SPC-1661, MFC-704 FMF Facility Modifications and Breakout Gloveboxes Installation, Revision 0,
1/28/2014
SPC-1738, Irradiated Material Characterization Laboratory SSPA Glovebox System, Revision 0,
8/27/2014
SPC-1785, MFC Fire Water Tank Specification, Revision 0, 8/15/2014
SPC-1963, HTIR Thermocouples for AGR-5/6/7, Revision 3, 2/27/2017
SPC-1793, ATR Motor Control Centers 670-E-10 through 670-E-14, Revision 1, 3/28/2016
SPC-1794, ATR DC Panel 670-E-26 Procurement Specification, Revision 0, 4/20/2015

B-13
for ATR High Temperature Loop (AHTL) 1C-W with an ASME Class 300 Discharge Flange and Associated Piping Modification, Revision 0, 04/12/2017
TEV-3033, IMCL Equipment Evaluations to Include the First Isolation Valves, Revision 0, 4/25/2017
TEV-3053, IMCL Sample Analysis Station (SAS) Shield Testing, Revision 0, 5/9/2017
TEV-3062, ATR Bypass Demineralizer 6-Ton Trolley Software, Revision 0, 6/7/2017
TFR-589, Technical and Functional Requirements HFEF Main Cell Generic Wall Feedthroughs, Revision 2, 6/21/2016
TFR-700, Technical and Functional Requirements for MFC-1729 Shielded Sample Preparation Area (SSPA), Revision 1, 12/4/2014
TFR-700, Technical and Functional Requirements for MFC-1729 Shielded Sample Preparation Area (SSPA), Revision 2, 7/6/2016
TFR-804, Technical and Functional Requirements for FMF Breakout Gloveboxes, Revision 2, 3/18/2015
TFR-847, EFF High Density Fuel Glovebox and Fuel Fabrication Equipment, Revision 0, 6/13/2013
TFR-855, ZPPR Ventilation System and Confinement Monitoring Upgrades, Revision 2, 04/20/2016
TFR-889, Technical and Functional Requirements Irradiated Materials Characterization Laboratory (IMCL) Shielded Sample Preparation Area (SSPA) Glovebox, Revision 1, 7/11/2016
TFR-901, IMCL – Shielded Container, Revision 1, 2/25/2016
TM-2015-003, ATR Complex Temporary Modification, Revision 0, 5/18/2017
TSR-186, Technical Safety Requirements For The Advanced Test Reactor, Revision 73, 02/21/2018
VDR-360497, Final Fabrication Stamped Drawings and Specifications, Revision 1, 05/19/2011
VDR-402418, SKF Bearing Number Update, Revision 0, 8/7/2007
WO-216399, 786 Install Main Breakers for Substation, Revision 1, 8/18/2015
WO-217715, Replace 786-MS-3 MP-3000 Relay, Revision 1, 5/13/2015
WO-224088, 786 Install Static Trip III Unit for 5-3 Breaker, Revision 1, 10/22/2015
WO-251203-01, 1729 IMCL SAS Fire Sealant and Door/Cable Still Shielding (FIB/SEM), Revision 0, 11/6/2017
WO-Q17874201, MFC 785 – Install Slave Repair Glovebox Monorail Hoist, Revision 0, 2/14/2013
WO-Q17874201 Change 1, MFC 785 – Install Slave Repair Glovebox Monorail Hoist, Revision 0, 3/5/2013
WO-Q17874201 Change 2, MFC 785 – Install Slave Repair Glovebox Monorail Hoist, Revision 0, 4/3/2013
WO-Q25220401, Replace Motor and Jackshaft on 670-M-15 PRZR Pump, Revision 0, 9/19/2017
ZPPR-OI-010, ZPPR Fuel Storage Container Handling, Revision 29, 03/01/2018
ZPPR-OI-016, Operations Modes, Revision 11, 07/20/2017
ZPPR-OI-300, Radiation Monitoring System, Revision 9, 07/20/2017
ZPPR-ONRI-0001, ZPPR Response to Anomalies, Revision 7, 07/20/2017

Interviews

Facility & System Engineering Manager MFC
Design Engineering & Drafting Manager MFC
Drafting Supervisor MFC
Engineering Director MFC
Engineering Management Systems Lead, Facility Services
Plant and Project Engineering Division Director ATR
Facility Design & Project Engineering Manager, Facility Services
Engineering Analysis Manager, Facility Services
Drafting Supervisor, Facility Services
Performance Assessment Specialist MFC
Configuration Management Engineer ATR
Nuclear Safety Program Lead
Nuclear Assurance Lead
Operations Division Director ATR
Nuclear Remote Systems Manager MFC
Nuclear Safety Manager MFC
Nuclear Acquisition Manager MFC
Design Engineer ATR
Design and Project Engineering Manager ATR
Performance Assurance Lead ATR
Quality Assurance Manager ATR
Management and Independent Assessment Lead
Cognizant Engineer ATR
Experiment Engineer ATR

Observations

Tour of Hot Fuel Examination Facility
Tour of Irradiated Materials Characterization Laboratory
Appendix C
Deficiencies

Deficiencies that did not meet the criteria for a finding are listed below, with the expectation from DOE Order 227.1A for site managers to apply their local issues management processes for resolution.

- Contrary to the requirements of 10 CFR 830.122, the calculation process does not include provisions for tracking and closure of open items such as unverified assumptions. BEA generated condition report CO-2018-0831, Validating Engineering Assumptions, to document and resolve this issue.

- Contrary to the requirements of 10 CFR 830.203, the BEA USQ process, as described in LWP-10800 and LWP-10801, does not adequately address the screening or evaluation of design change packages that will be implemented in phases or elements with intermediate return to service.

- Contrary to the requirements of 10 CFR 830.122 and NQA-1-2008, Requirement 3, part 601.3, two examples were noted (ECAR-2374 and ECAR-2461) where calculations were not updated to reflect current design and as-built configuration, resulting in inconsistent design documentation and challenging CM.

- Contrary to the requirements of 10 CFR 830.203 and SD-11.1.46, EJ 7.0-11 had a less than adequate USQ screening performed. Specifically, the USQ for EJ 7.0-11 did not address conditions caused by phased installation, including breach of a confinement barrier and the potential for un-evaluated seismic interactions due to incomplete anchorage of steel columns.

- Contrary to the requirements of NQA-1-2008, Requirement 3, part 600, no technical justification was provided for EJ 7.9.2-28 addressing the weight differential introduced by the insulation replacement and its impact on piping qualification or stress analysis margins, including potential impact to safety-related piping and supports.

- Contrary to the requirements of LWP-10501, no USQ screening/evaluation was performed for EJ 7.9.2-28.

- Contrary to the requirements of LWP-10501 and LWP-10500, the implementation of EJs 1793, 1812, 1813, and 1971 caused several discrepancies in breaker settings, lowering the effectiveness of the ground fault trip device. These discrepancies impeded the CM process. BEA initiated corrective action CO-2018-0908, Incorrect Breaker Trip Settings, to address this issue.

- Assessments of the CM process are not performed periodically as required by DOE STD-1073-2003.

- Contrary to the requirements of 10 CFR 830.122, BEA does not have an assessment program to gauge engineering performance on a regular basis. BEA generated condition report CO-2018-0833, Engineering Annual Assessments, to document and resolve this issue.