

Versatile Advanced Test Reactor (VATR)

Briefing to Nuclear Energy Advisory Committee

John W. Herczeg Deputy Assistant Secretary Nuclear Technology Research and Development Office of Nuclear Energy October 13, 2017

Need for a Fast Neutron Source

- The need has been established through a series of independent surveys of the potential U.S. user community (industry, DOE programs) resulting in a <u>NEAC report ("Assessment of Missions and Requirements for a new U.S. Test Reactor" 2/2017); it states that "The Ad Hoc NEAC subcommittee recommends that DOE-NE proceed immediately with pre-conceptual planning activities to support a new test reactor (including cost and schedule estimates)."
 </u>
- From the discussions with users, the laboratories have established:
 - Draft generic requirements
 - Some specific requirements
- <u>The laboratory team has initiated (3/2017) work towards delivering by 12/15/17 a R&D plan</u> that addresses three aspects of our future activities
 - **Short-term R&D**: Work needed to start procurement and construction after 3 years (this includes confirmatory work beyond 3 years)
 - Long-term R&D: Work needed for future (post startup) operational and experimental improvements
 - Prospective R&D: High risk/ high reward activities

Versatile Advanced Test Reactor Research and Development Organization

3

Draft Requirements/Assumptions

- 1. Reactor needs to be operational within approximately 10 years
- Reach <u>fast flux of approximately 4.E15 n/cm²-s</u>, with prototypical spectrum
- Load factor: as large as possible (<u>maximize dpa/year to > 30</u> <u>dpa/year</u>)
- 4. Existence of a pathway for driver fuel disposal
- 5. Provide flexibility for novel experimental techniques
- 6. Be capable of running at the same time loops representative of typical fast reactors (Candidate Coolants: Na, Lead, LBE, Gas, Molten Salt)
- 7. Effective testing height: evaluate the range defined by users
- 8. Ability to perform large number of experiments simultaneously
- 9. Metallic driver fuel (possible options: LEU, Pu, LEU+Pu)

Development Principles for the Versatile Advanced Test Reactor

- 1. <u>Use simple and robust designs</u> and well demonstrated technologies; take risk only if necessary
- 2. <u>All technologies (except for experimental instrumentation</u> and devices) should have a <u>very high TRL</u>
- <u>All technologies</u> should be able to <u>develop a reliable supply</u> <u>chain</u> with sufficient margins to avoid adverse effects on reactor construction and startup schedules
- 4. <u>Concepts should include comfortable margins to allow for:</u>
 - for easy operability
 - reliable operations
- 5. <u>Built in margins should allowing for future experimental</u> <u>flexibility</u>
- 6. Safety case should facilitate experimentation

Three Year R&D Plan Overview

6