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Overview
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• Project start date:  10/1/2015
• Project end date:  *9/30/2018
• Percent complete: 88%

Lack of robust lean-burn and EGR-diluted 
combustion technology/controls  
Inadequate fundamental knowledge base 
for clean diesel combustion and emissions 
processes 
Determine factors limiting low 
temperature combustion (LTC) and 
develop methods to extend limits
Understanding impact of likely future 
fuels on LTC and whether LTC can be 
more fully enabled by fuel specifications 
different from gasoline and diesel fuel

Barriers

Partners include nine national labs, 13 
universities, external advisory board, and 
stakeholders (145 individuals from 86 
organizations)

Partners

Budget
• Total project funding

o DOE share:  $855k
o Contractor share: 

• Funding in FY 2017:  $1,300k
• Funding for FY 2018:  $855k

Timeline

*Start and end dates refer to three-year life 
cycle of DOE lab-call projects, Co-Optima is 
expected to extend past the end of FY18



Overview
Boosted SI and Multimode SI/ACI Combustion, Part 2

Effects of fuel properties and property quantification on engine 
efficiency using engine experimental data to feed into the fuel 
and engine Co-Optimizer.
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Project PI
Fuel Properties Effects on Auto-Ignition in 
Internal Combustion Engines ($250k)

Kolodziej (ANL)

Virtual CFR engine based on CFD ($50k) Som (ANL)
Co-Optimizer ($140k) Grout (NREL), 

McNenly (LLNL)
Develop Co-Optimizer Inputs ($415k) Grout (NREL),

Mueller (LBNL)
McNenly (LLNL)



Relevance
• Internal combustion engines will continue to dominate the fleet 

for decades and their efficiency can be increased significantly.
• Research into better integration of fuels and engines is critical to 

accelerating progress towards our economic development, 
energy security, and emissions goals.

• Improved understanding in several areas is critical for progress:
o Fuel structure – property relationships
o How to measure and predict key fuel properties
o The impact of fuel properties on engine performance and emissions

• This presentation is focused on Boosted SI and SI/ACI multi-
mode combustion. MD/HD diesel, and full-time ACI combustion 
strategies are addressed in other Co-Optima presentations.
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ACI: advanced compression ignition
HD: heavy duty
LD: light duty
MD: medium duty
SI: spark ignition



Milestones
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Month / Year Description of Milestone or Go/No-Go Decision Status

12/31/17 Baseline standard (N/A) ASTM RON test conditions 
to boosted CFR engine operation (ANL).

Completed

6/30/18 Release of Co-Optimizer as open source to external 
community (contingent on DOE assent) (NREL).

On track

9/30/18 Demonstrate ability of Co-Optimizer framework to 
incorporate synthetic data and optimize resulting 
merit function in one or more directions (LBNL).

On track

9/30/18 Measure the uncertainty quantification 
performance using a hierarchy of kinetic-based 
engine models at varying levels off chemical and 
fluid dynamic fidelity (LLNL).

On track



Approach

Projects have contributed to Co-Optima in two ways:
1 – Central Fuels Hypothesis
• If we correctly identify the critical fuel properties that affect 

efficiency and emissions performance for boosted SI and multi-
mode engines, then fuels that have those properties will provide 
optimal engine performance.

2 – Boosted SI Merit Function
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• Objective:  Learn how fuel properties, such 
as heat of vaporization (HoV) or even RON 
itself affect a fuel’s propensity for auto-
ignition and knock intensity

• Last year, the HoV cooling effect on RON 
was compensated using intake air heating 
for constant RON 98 PRF-ethanol blends, 
expanding previous work by Foong et al.

• However increased intake air temperature 
(IAT) reduced cylinder pressure at spark 
timing (PST)

• Using small amounts of intake pressure 
compensation, PST could be recovered at 
the same time as MAT with increased HoV

• Resulting test conditions were the same 
MAT as PRF and same PST that the  high 
HoV fuel had under standard RON 
conditions

Fuel Properties Effects on Auto-Ignition in Internal 
Combustion Engines

2017
AMR

2018
AMR
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Fuel Properties Effects on Auto-Ignition in Internal 
Combustion Engines

Levels of MAT and intake pressure compensation:
1. Heat IAT until MAT matches that of PRF
2. Increase intake pressure until PST of PRF fuel 

is matched from standard RON test
3. Increase intake pressure until PST of high HoV

fuel is matched from standard RON test
4. Increase intake pressure until IMEPg is 

matched with that of the PRF (constant IMEPg
fuel knock rating also compensated for MAT)

Evaluation of full fuel vaporization:
• Sweeps of IAT revealed the temperature 

where not all of the fuel was fully vaporized 
at the exit of the carburetor for each blend 
(technical backup slides)

• Compiling that data, a relationship between 
PRF-ethanol content and the minimum IAT 
necessary for full vaporization was made



9

Fuel Properties Effects on Auto-Ignition in Internal 
Combustion Engines

• Studies of autoignition and various 
knock metrics with PRF 90 have been 
performed

• Octane is rated by CFR Knockmeter, 
whereas OEM knock calibration uses 
mean amplitude of pressure 
oscillations (MAPO)

• Cylinder conditions from near-MON 
to beyond RON examined

• Intake P = 1.0 – 1.28 bar
• Intake Port T = 33 – 150 °C

• Knock Metrics – Pearson Correlation
• Overall weak correlations 

between CFR knockmeter to 
conventional knock metrics

• Several pressure transducer-
based metrics correlated to 
MAPO



10

Virtual CFR Engine Based on CFD

Objective:
Develop a 3D CFD based CFR engine model to
capture fuel effects on knock propensity

Approach:
Track turbulent flame front using level-set
technique (with tabulated laminar flame speed)
and predict end-gas autoignition using a multi-
zone model

Accomplishment:
The model was validated against engine
experiments and was demonstrated to be
capable of predicting mean knock characteristics
accurately for varying operating conditions and
fuel composition

+



Virtual CFR Engine Based on CFD
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• The CFD model was improved by
incorporating realistic engine geometry

• Multi-cycle RANS simulations were
performed for varying operating conditions
and fuels, and were validated against
engine experimental data

• The updated model captured local in-
cylinder pressure evolution, mean knock
characteristics (knock onset & knock
intensity) and transition from non-knocking
to knocking adequately

Iso-octane spark timing sweep
(RON condition)

Experiment

No knock (ST = 50 ATDC)Knock (ST = -130 ATDC)
Average knock intensity
Expt: 2.32 bar
Sim: 2.57 bar

Average knock point
Expt: 11.150 ATDC
Sim: 11.30 ATDC

Average CA50
Expt: 290 ATDC
Sim: 30.20 ATDC

Average CA50
Expt: 7.60 ATDC
Sim: 7.40 ATDC

Model Validation:



Virtual CFR Engine Based on CFD
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• The CFD model was evaluated for operating
conditions near the boundary between
knocking and normal SI combustion

• Knock propensity was captured reasonably
well for multi-component blends

PRF96.9 RON condition (ST = -130 ATDC)

Knock characteristic Experiment Simulation

Average knock intensity 2.1 bar 2.4 bar

Average knock point 10.90 ATDC 11.590 ATDC
Average CA50 8.30 ATDC 9.50 ATDC

Knock characteristic Experiment Simulation

Average knock intensity 0.51 bar 0.66 bar

Average knock point 22.820 ATDC 22.440 ATDC
Average CA50 17.70 ATDC 18.80 ATDC

KLSA for iso-octane ST sweep (ST = -40 ATDC)

Sensitivity to Fuel composition:KLSA prediction:



Co-Optimizer
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Multi-objective optimization approach:
Optimize several conflicting objectives 
simultaneously, e.g.,
1. Maximize engine efficiency (merit, SI MF) 

and minimize fuel costs
2. Maximize predicted engine performance 

(NMEP) and minimize uncertainty (using 
Gaussian process models trained on 
experimental data)

 The co-optimizer is agnostic as to what the 
objectives are.

Uses the python package DEAP (evolutionary 
algorithm), suitable for fast-to-compute 
objective functions. Tradeoff (Pareto) curves 
inform about:
1. The cost to be expected for a desired 

efficiency value and vice-versa (see figure)
2. The predicted reachable performance and 

the associated uncertainty, which indicate 
fuel property ranges for future experiments

Example tradeoff:
MMF = 20 
Cost = 2.8



Co-Optimizer

14

Numerical Experiments:

1. Deterministic optimization: maximize SI MF 
and minimize fuel cost (using 22 fuel 
components, linear blending model)

2. Optimization under uncertainty: assume 
uncertainty in all coefficients of the SI MF 
(different distributions, 100 random samples); 
maximize the means SI MF and minimize the 
variance of SI MF

3. Optimization under uncertainty using 
emulation of experimental data: maximize 
predicted NMEP and minimize uncertainty of 
the prediction using Gaussian Process model

Take-home: co-optimizer is agnostic to what 
your objective functions are
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Decision Support:

What we can do so far:
• Tradeoff curves allow insights into relationships between different optimization 

goals (e.g., what range of SI MF value can I achieve given cost X)
• Tradeoff curves enable experimentalists to identify promising future 

experiments (e.g., fuel properties and engine operation conditions that are 
predicted to yield high NMEP)

• UQ tools allow to study the sensitivity of the tradeoff curves to different 
(random) conditions (e.g., changes in fuel costs, deviations in fuel composition) 
and to derive robust fuel properties and operating conditions

What we still have to do:
• “Collect” more data for more accurate approximation models (need support 

from experimentalists)
• A ”true” co-optimization of fuels and engines by bi-level optimization:

– At the high level: select fuel
– At low level: optimize corresponding engine operation for max performance
– Alternate between high and low level

• Software release with current capabilities, possibly with GUI

Co-Optimizer



Develop Co-Optimizer Inputs
Data-driven Gaussian Process 
Surrogate Modeling:
• Gaussian processes perform 

Bayesian inference to learn the 
distribution of possible functions.

• Provides closed form expression for 
prediction mean and variance. 

• Successfully interpolates 
experiments and predicts the 
performance of unseen fuels.

16



Develop Co-Optimizer Inputs
Nonlinear octane model created for 
Co-Optimizer inputs:

• Co-Optimizer previously limited to 
linear blending model for 
RON/MON (ignores 
synergistic/antagonistic effects)

• For surrogate blends, correlations 
based on zero-dimensional ignition 
simulations provide better 
estimates for RON/MON but fail in 
some cases (max abs. error ~10 
ON, r.m.s. error ~2 ON)

• A new prediction method was 
created with artificial neural 
networks (ANN) using ignition 
simulations and other readily 
available fuel mixture properties

• Superior to linear blending models 17

RON𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖

RON𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑓𝑓 𝜏𝜏𝑖𝑖𝑖𝑖𝑖𝑖, HOV, structure, …

RON𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = �
𝑖𝑖=0

𝑛𝑛𝑛𝑛𝑛𝑛

𝑥𝑥𝑖𝑖RON𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

Surrogate fuel blends can be any 
combination of the  31 hydrocarbon and 
25 high performance blendstocks from 
the Co-Optima gasoline surrogate.



ANN octane model trained & 
tested on >700 RON/MON 
published experiments:
• New approach gave three times 

more accurate prediction of RON 
and MON than linear blending

• Can be used in the high level fuel 
comparison process of Co-
Optimizer

• Easy to build virtual surrogate 
fuels to test blending effects
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Develop Co-Optimizer Inputs

Method RON 
MAE

RON 
RMSE

MON 
MAE

MON 
RMSE

Linear 13.2 4.8 9.9 2.3

Ignition 9.9 2.3 14.0 3.2

ANN 6.0 1.0 4.0 0.7

Ignition based
ANN

Linear blending



Responses to 2017 AMR Reviewer 
Comments
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• “…the project is well conceived, plays an important role in Co-Optima, and 
addresses critical technical barriers.”

– Reviewers had very positive feedback on the approach, accomplishments and collaborations

• “RON and HoV effects, and development of the virtual CFR engine, address 
downsized boosted engines, which are very pertinent for light-duty OEMs.”
“…using engine experiments and simulations to provide information regarding 
how fuel properties affect engine efficiency, is excellent…”

• “the modeling capability with the virtual CFR engine results was impressive”
– Further progress has been made at understanding how fuel properties and engine cylinder 

conditions affect the RON measurement, and better understanding its use and limitations
– Tighter collaboration between Virtual CFR simulations and experiments have been important
– Three-prong attack on RON/MON measurements, 3D CFD simulations, and ANN predictions

• “only small concern at this point is that collaborations could be expanded to 
include others with CFR engines and/or modified CFR engines”

– New collaboration this year on CFR research with Prof. Bengt Johansson from KAUST

• “The reviewer liked the fact that uncertainty is captured in the Co-Optimizer 
tool, and added that it is important that the output is capable of producing 
distributions and space plots rather single curves.”

– Improvements have been made to further reduce uncertainty



Collaborations
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Co-Optimization of Fuels and Engines
• Collaboration across nine national laboratories and two DOE offices
• Eight university teams joined in FY17
• Industry FOA issued April, 2018
• 145 stakeholders from 86 organizations

– External advisory board
– Monthly telecons with technical and programmatic updates
– One-on-one meetings and conference presentations

Fuel Properties Effects on Auto-Ignition in ICEs
• CFR Engines, Inc. – Hardware support and technical guidance
• Marathon Petroleum – Hardware support and technical guidance
• KAUST – Ongoing discussions with Bengt Johansson and hosted PhD student
Virtual CFR Engine Based on CFD
• Convergent Science – CFD code guidance
• Univ. of Connecticut – Mechanism reduction
Co-Optimizer
• NREL (Grout, King), LBNL (Mueller), LLNL (McNenly)
Inputs to the Optimizer
• LLNL (Pitz, Wagnon), ANL (Som, Pal)



Remaining Challenges and Barriers
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• Formally complete boosted SI work; ensure results inform external debate 
on new fuels/engines

• Developing fundamental autoignition understanding for blendstocks of 
diverse composition under full boosted SI operating pressure range 

• Developing combined experimental/ modeling approach to identifying fuel 
property/engine parameter impacts for wide array of ACI approaches

• Developing high-fidelity, computationally efficient kinetic and fluid 
dynamic models and high quality experimental data to validate

• Developing improved analysis tools that assess process economics, refinery 
integration of new blendstocks, technology readiness, sustainability, and 
infrastructure compatibility to guide R&D efforts



Future Work
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Fuel Properties Effects on Auto-Ignition in ICEs (Kolodziej-ANL)
• Test autoignition and knock characteristics of Co-Optima RON 98 core 

fuels in beyond RON and beyond MON pressure-temperature conditions
Virtual CFR Engine Based on CFD (Som-ANL)
• Numerical interrogation of fuel-engine interactions at beyond RON/MON 

conditions for Co-Optima core fuels as well as their blends with Tier 3 
biofuel blendstocks

• Incorporate improved models for wall heat transfer and conjugate heat 
transfer 

Develop Co-Optimizer Inputs and Co-Optimizer (Grout-NREL, Mueller-
LBNL, McNenly-LLNL)
• Development of a bi-level optimization tool that at the upper level optimizes 

the fuel and at the lower level optimizes the engine configuration
• Investigate the space of a possible data-derived multi-mode merit function
• Validate octane prediction performance for new BOBs
• Test other fuel properties as inputs for Neural Network

Any proposed future work is subject 
to change based on funding level



Summary
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Relevance:
• Better integration of fuels and engines research critical to accelerating progress towards economic 

development, energy security, and emissions goals

Approach:
• Engine experiments and simulations provide detailed analysis on how fuel properties affect engine 

efficiency and help to refine the SI Merit Function, which feeds into the overall Co-Optimizer function for 
engine efficiency and fuel blend cost

Accomplishments:
• Performed deeper evaluation of the effects of fuel HoV on RON testinng, including temperature of full 

vaporization and compensating for cylinder pressure in addition to mixture air temperature up to 50% 
ethanol content

• Found inconsistencies between CFR knockmeter response to intake pressure, temperature, and 
compression ratio compared to several cylinder pressure transducer based knock metrics

• The Virtual CFR CFD model was validated against engine experiments and was capable of predicting 
mean knock characteristics accurately for varying operating conditions and fuel composition

• Used Co-Optimizer to examine experimental engine data and tradeoffs between engine performance, 
fuel cost, and uncertainty, as well as to guide future experiments for improvements in these three areas

• Created new tool for predicting octane numbers of surrogate fuels with ~1 ON accuracy
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Technical Back-Up Slides



Fuel Properties Effects on Auto-Ignition in Internal 
Combustion Engines
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• IAT sweeps were performed with each 
PRF-ethanol blend

• At high enough IAT, each fuel had a 
linear “enthalpy ratio” response

• At lower IAT where super-saturation 
occurred, actual enthalpy change 
across carburetor would drop below 
linear trend seen at higher IAT when 
fully evaporated

• From the vapor fraction analysis, the 
minimum IAT required for full fuel 
evaporation at the outlet of the 
carburetor can be estimated

• Unclear if liquid droplets entering the 
engine have an important effect on 
knock or RON rating
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Develop Co-Optimizer Inputs

ANN Approach
• Supervised learning

• Define neural network architecture
(inputs/outputs/hidden layer(s))

• Stochastic gradient descent
• Large “labeled” database

• RON/MON measurements
• >700 surrogate measurements 

collected from literature
• Use cross-validation to prevent

over-fitting
• Inputs include ignition data, HoV, 

molecular formula, and liquid 
density
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