Blue Bird V2G Electric School Bus Commercialization Project

Project ID: EE0007995
Principal Investigator: Andy Moore
Presenter: Michael Boggess
Blue Bird Corporation
June 20, 2018

This presentation does not contain any proprietary, confidential, or otherwise restricted information.
Overview

Timeline
- Project start date: 1/19/17
- Project end date: 12/31/20
- Percent complete: 15%

Budget
- Total project funding: $9,804,528
 - DoE share: $4,902,237
 - Contractor share: $4,902,291

Partners
- Project lead: Blue Bird
- Vehicle subcontractors:
 - ADOMANI
 - Efficient Drivetrains, Inc.
 - EPC Power
- Charging system partners
 - Nuvve
 - Southern California Edison
- School bus host: Rialto USD
- Contributing funder: So. Coast AQMD
- Technology resource: NREL
- Project manager: NSI

Barriers
- **Value Proposition**: Heavy-duty battery-electric vehicles must have performance, safety, and costs comparable to or better than advanced conventional vehicle technologies to gain widespread market uptake
- **Vehicle-Grid Integration**: Heavy-duty battery-electric vehicles should be supported by charging technologies and standards that can capture available vehicle-grid synergies
Electric school buses can blaze the trail to substantially increased deployment of electric medium- and heavy-duty vehicles by pioneering the integration of fleets as grid-integrated distributed energy resources.

Overall Objectives
- Create a compelling value proposition for electric school buses based on a competitive total cost of ownership
- Equip with V2G and V2B income-generating grid integration capabilities
- Advance the technical maturity of selected medium-duty electric drive components to achieve superior energy efficiency and reduced operating costs

Objectives this Period
- Develop first two prototype buses (P1 and P2)
- Determine optimal drivetrain architecture (transmission; rear axle ratio)
- Investigate thermal management as a key to increased energy efficiency
- Use P1 to establish an energy efficiency benchmark
Milestones

<table>
<thead>
<tr>
<th>Milestone Description</th>
<th>Milestone</th>
<th>Start Mo.</th>
<th>Duration</th>
<th>End Mo.</th>
<th>Budget Period 1</th>
<th>Budget Period 2</th>
<th>Budget Period 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance Period 1 Component Development</td>
<td>Task 1.8.6 Test and evaluate P1 at NREL</td>
<td>M1</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 1.2.2 Select best drivetrain option</td>
<td>M2</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 1.9.3 Fabricate P2 drive train assemblies</td>
<td>M3</td>
<td>5</td>
<td>3</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 1.9.7 Test and evaluate updated P1 at NREL</td>
<td>M4, G/N-G#1</td>
<td>12</td>
<td>1</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Period 2 Component, System, and Vehicle Testing and Production</td>
<td>Task 2.2.2 Fabricate P3-P4 drivetrain assemblies</td>
<td>M5</td>
<td>13</td>
<td>2</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 2.4.5 Other testing</td>
<td>M6, G/N-G#2</td>
<td>16</td>
<td>2</td>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 2.5.5 NRTL documentation</td>
<td>M7</td>
<td>18</td>
<td>1</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 2.7.6 Test and evaluate B1 at NREL</td>
<td>M8, G/N-G#3</td>
<td>23</td>
<td>1</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 2.7.10 B5-B8 delivery</td>
<td>M9</td>
<td>25</td>
<td>1</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance Period 3 Vehicle Demonstration</td>
<td>Task 3.2.2 Battery lease development</td>
<td>M10</td>
<td>24</td>
<td>5</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 3.2.3 Stage 1 commercialization</td>
<td>M11</td>
<td>28</td>
<td>5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Task 3.3.2 Long-term data archiving</td>
<td>M12</td>
<td>35</td>
<td>2</td>
<td>36</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Completed Milestone**
Approach

Smart Design
- Implement weight reduction; component right-sizing; drivetrain optimization (e.g., motor-specific rear axle ratio)

Advanced Telematics
- Adjust electric drive parameters in real time to anticipate conditions on the route ahead

Performance, safety, and costs comparable to or better than advanced conventional vehicle technologies

Integrated Thermal Management
- Employ sensing, controls, and coolant loops to maintain batteries at optimal temperature and make beneficial use of surplus heat

High-Power Charge/Discharge Capability
- Employ 200 kW on-board inverter with grid-forming capability

Use of charging technologies that can capture available vehicle-grid synergies
Developed Efficient Drivetrain Architecture

Operational Simulation
- Direct drive (single speed) architecture was shown to have higher energy efficiency across three different duty cycles and vehicle loadings.

<table>
<thead>
<tr>
<th>Weight</th>
<th>HD-UDDS</th>
<th>NREL</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>35000</td>
<td>87.2</td>
<td>86.2</td>
<td>87.8</td>
</tr>
<tr>
<td>27000</td>
<td>87.3</td>
<td>86.5</td>
<td>87.8</td>
</tr>
<tr>
<td>22000</td>
<td>87.2</td>
<td>86.7</td>
<td>87.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weight</th>
<th>HD-UDDS</th>
<th>NREL</th>
<th>Customer</th>
</tr>
</thead>
<tbody>
<tr>
<td>35000</td>
<td>85</td>
<td>85</td>
<td>85.7</td>
</tr>
<tr>
<td>27000</td>
<td>84.5</td>
<td>84.5</td>
<td>86</td>
</tr>
<tr>
<td>22000</td>
<td>84</td>
<td>83.7</td>
<td>85.8</td>
</tr>
</tbody>
</table>

Setting of Rear Axle Ratio
- TM4 Sumo traction motor was chosen based on its low-speed torque performance.
- The range of rear axle ratios was identified that could support the power required for a standing start on a grade of 20% and a top speed of 65 MPH.
- Operational simulation continues with the goal of identifying the ratio that will produce the best average motor efficiency at the most common motor speeds.
Designed Enhanced Thermal Management System

- Options for the bus's thermal management system were modeled and a design chosen that represents the best tradeoff between:
 - Optimization of thermal energy recovery and use
 - Cost and complexity
- The selected design integrates heating and cooling of the batteries, traction motor, and high-voltage system
Technical Accomplishments and Progress

Built and Benchmarked First Prototype Bus - 1

Development of Prototype P1
- Blue Bird and team member Efficient Drivetrains, Inc. (EDI) adapted EDI’s PowerDrive electric drive system for the requirements of a type C electric school bus
- The system was installed on a purpose-built Blue Bird glider

Duty Cycle Analysis
- NREL collected detailed duty-cycle data from buses in Rialto school district and combined with Fleet DNA data to select representative drive cycles for powertrain development and vehicle efficiency testing.
Dynamometer Benchmarking

- Prototype bus P1’s energy efficiency was benchmarked on NREL’s REFUEL dynamometer using an NREL duty cycle derived from ~1,000 hours of school bus operating data.
- The demonstrated efficiency of 1.53 kWh/mile serves as the initial “pre-improvement” benchmark that the subsequent prototypes will be measured against.

P1 on NREL’s REFUEL dynamometer
The effort is supported by a multi-disciplinary project team and supportive group of stakeholders.

STAKEHOLDER GROUP
- Interested Parties
 - Clean transportation NGOs
 - California Public Utility Commission

PROJECT TEAM

Prime Contractor
- Blue Bird

Core Team
- ADOMANI
- EDI
- EPC Power
- NREL
- NSI
- Nuvve

Deployment Team
- Rialto USD
- Scheduling coordinator TBD
- So Cal Edison
- South Coast AQMD

Vehicle Development
- University of Delaware

V2G Technology
- Regional utilities
- School districts
Remaining Challenges and Barriers

Meet technology improvement objectives
- Energy efficiency of 1.10 kWh/mile
- Fully certified 200 kW bidirectional on-board inverter

Implement charging system
- Obtain interconnection agreement with Southern California Edison
- Specify and install all relevant charging equipment
- Commission V2G charging stations

Demonstrate buses as both transportation assets and distributed energy resources
- Operate in daily pupil transport service
- Participate in CAISO’s wholesale power markets
- Document total-cost-of-ownership parameters (e.g., electricity expense, revenue generation)

Commercialization
- Finalize production version of V2G bus (“design for marketability”)
- Develop bus financing tools (e.g., battery leasing scheme)
Remainder of FY18

- Pursue technology improvements
 - Thermal management
 - Telematics/drive parameters
 - High-power inverter
 - Incorporate improvements into P1 and P4

- Prepare for Go/No-Go Point #1 (Milestone M4) at end of F1Q19
 - Send P3 to NREL for energy efficiency evaluation
 - Must close 50% of gap between P1 benchmark (1.53 kWh/mile) and project target (1.10 kWh/mile)

Any proposed future work is subject to change based on funding levels
FY19
- Take stock of results from P3 and P4 energy efficiency evaluations
- Identify areas where further technology improvement will have biggest payoffs, for example:
 - Further refinements to the drivetrain control system
 - Aggressive light-weighting
 - Reduction in power circuitry energy losses
- Move into certification phase for high-power inverter

Any proposed future work is subject to change based on funding levels
Summary

- The project is directly relevant to barriers identified in Vehicle Technology Office roadmaps – especially mutually beneficial vehicle-grid integration arrangements that can lead to competitive total cost of ownership and widespread deployment.
- The team is at an early stage of the project but has laid a strong foundation for the accomplishment of project goals.
- The next two quarters will be critical in determining the ultimate success of the project.

Summary of Key Technical Results in FY18

<table>
<thead>
<tr>
<th>Focus Area</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prototyping and benchmarking</td>
<td>Designed, built, and formally benchmarked prototype bus P1</td>
</tr>
<tr>
<td>Drivetrain architecture optimization</td>
<td>Determined parameters of optimal application-specific drivetrain architecture</td>
</tr>
<tr>
<td>Thermal management strategies</td>
<td>Developed an approach for integrating thermal management across key subsystems</td>
</tr>
<tr>
<td>Telematics as an energy efficiency tool</td>
<td>Implemented a telematics platform with novel predictive capabilities</td>
</tr>
</tbody>
</table>