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Abstract 
Although it is a critical component of any measure of color rendition, a standardized set of color samples can 
seldom perfectly match a real space or a real set of observed objects. This means there will always be some 
level of mismatch between predicted and observed color shifts. This article explores how the color 
distortions of three object sets that could be used in experiments compare to the color distortions predicted 
using the color evaluation samples of IES TM-30-15 (TM-30). The experimental object sets include those 
from a recent experiment [Royer and colleagues 2016], a set of produce (10 fruits and vegetables), and the 
X-Rite ColorChecker Classic. This numerical analysis focuses on the range of differences between viewed and 
characterized color shifts—using the TM-30 Fidelity Index (Rf), the TM-30 Gamut Index (Rg) and an 
alternative to Rg based on ΔC in CIECAM02—over a set of 344 spectral power distributions. The differences 
depended on the average chroma and spectral features of the sample set. The substantial range of 
differences shown for the produce and the ColorChecker means that design criteria for color rendition 
derived using these sample sets are less reliable. Specifiers should carefully consider how average measures 
of color rendition are applied to real spaces, and experimenters should carefully select experimental objects 
to avoid mischaracterizations. 
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1 Introduction 
One of the early human factors experiments to focus on color rendition was conducted by C.L. Sanders in 
1959 [Sanders 1959]. Participants viewed six natural objects under different spectra created by mixing 
fluorescent lamps of varying chromaticities. In his article describing the work, Sanders did not include the 
spectral power distributions (SPDs) of the lamps, but did include the spectral reflectance functions of the 
objects, concluding that the range of acceptable colors of an object was very dependent on the object. 
Although the importance of the object was emphasized in this early work, subsequent research has 
deemphasized characterizing the spectral reflectance functions of the objects, focusing instead on the 
qualities of different SPDs. This article takes a fresh look at the role of specific objects, as characterized by 
their spectral reflectance functions, in psychophysical experiments on color rendition. 

As the quest for psychophysically-relevant color rendition measures has surged in the last decade, a number 
of original experiments have been conducted that ask people about their impressions of a group of objects, 
relating their responses to established color rendition measures for the sources used in the experiment. 
Reports on these experiments have typically focused on the values of color rendition measures derived from 
SPDs, with emphasis on trying to understand if the values can correctly match the rank order of the 
participants’ perceptions. However, the psychophysical stimulus (and independent variable) in studies on 
color rendition is not the SPD alone, or any derived color rendition measure; the visual stimulus results from 
the interaction of the SPD and the specific objects being viewed. As an extreme example, one should not 
expect CIE Ra to predict perceptions of a set of only red objects. The same is true of more modern measures 
of average color fidelity, such as the Illuminating Engineering Society’s (IES) Fidelity Index (Rf), which is part 
of TM-30-15 (TM-30) [IES 2015]. 

Color rendition measures—especially ones seeking to characterize average performance—are calculated 
using standardized sets of spectral reflectance functions, such as the eight pastel test color samples (TCS) 
used to calculate the Commission Internationale de l’Eclairage’s (CIE) General Color Rendering Index (Ra) [CIE 
1995] or the 99 color evaluation samples (CES) used in TM-30 Rf or TM-30 Rg [David and others 2015; IES 
2015]. In contrast, the objects viewed by study participants have ranged from their own skin, to a selection 
of food, to packaged consumer goods, to a set of manufactured color samples, such as the X-Rite 
ColorChecker Classic, also known as the Munsell Color Checker or MacBeth Color Checker. These sets of 
viewed objects do not match any of the standardized sample sets used for calculating color rendition 
measures, adding ambiguity to experimental results because the color rendition measures are potentially a 
weak characterization of the visual stimulus. Even subtle mismatches between the characterized stimulus 
(based on standardized samples from a color rendition measure) and the experimental stimulus (that is, a 
set of objects in a room or booth) may indiscreetly lead to results that are not generalizable. 

Because a standardized set of spectral reflectance functions may not match a specific group of objects well, 
it is possible that a source will have a relatively high fidelity value, but render the specific objects with 
substantially lower fidelity. This may ultimately contribute to erroneous findings about the psychophysical 
meaning or “accuracy” of various measures, such as CIE Ra or TM-30 Rf. For example, a rank order for 
perceived fidelity may accurately reflect the fidelity of the visual stimulus, even though it does not match 
the rank order according to a standardized fidelity measure. With so few research experiments reporting the 
properties of the observed objects—which appear to be chosen most frequently based on anecdotal 
evidence of distribution across the hue range—it is impossible to determine the true effect of this oft-
overlooked phenomenon. However, it is likely that the mismatch has rarely been considered, based on the 
analyses presented in journal articles. 
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1.1	 Object Sets from Past Experiments Focusing On Color Preference and Other Subjective 
Impressions of Color Rendition 
The quantity and type of objects included in color rendition experiments has varied considerably. Some 
narrowly-focused experiments (or parts of experiments) have focused solely on rendition of skin tones 
[Quellman and Boyce 2002; Teunissen and others 2016; Veitch and others 2002; Wei and others 2014a; Wei 
and others 2014b], and others have focused on printed images or the X-Rite ColorChecker [Islam and others 
2013; Liu and others 2013; Rea and Freyssinier-Nova 2008; Schanda and Sandor 2003; Szabó and others 
2009; Veitch and others 2014]. Some have primarily examined fruits and vegetables [Jost-Boissard and 
others 2009; Liu and others 2013; Ohno and others 2015; Rea and Freyssinier 2010; Teunissen and others 
2016; Thornton 1974; Zukauskas and others 2012], while others have included a broader variety of 
consumer goods [Lin and others 2015; Smet and others 2010; Spaulding 2012; Szabo and others 2014; Wei 
and others 2014b; Xu and others 2016]. With the exception of several recent studies [Islam and others 2013; 
Jost-Boissard and others 2014; Royer and others 2016; Smet and others 2010; Wei and others 2016a], most 
recent literature on color preference includes limited discussion of the attributes of the objects, despite the 
fact that they are critical to the stimulus being evaluated. Two studies have also demonstrated the varying 
influence of different types of objects on judgements of color rendition [Royer and others 2016; Wei and 
others 2016a]. 

Another important consideration is the number of objects included in the evaluated scene. Most of the 
previously noted experiments have used a relatively small number of objects (less than 20) presented in a 
viewing booth, but a few have used more objects presented in full-size spaces [Houser and others 2005; Lin 
and others 2015; Spaulding 2012; Szabo and others 2014; Wei and others 2014a; Wei and others 2014b]. 
This contextual factor may also influence participant responses. Rea and Freyssinier point out that with a 
large number of objects, some observers may focus on one particular color while other observers may give 
an overall response to the objects in the field of view [Rea and Freyssinier-Nova 2008]. However, applying 
general color rendition measures to situations that include only a limited set of objects (e.g., only fruit), 
perhaps not even including all hues, is particularly problematic. Although important, this analysis does not 
examine how the number of objects presented, or the arrangement of objects, effects outcomes. 

1.2	 Purpose 
The purpose of this article is to illustrate the range of discrepancy, or mismatch, between color rendition 
measures and experimental stimuli. This was accomplished using three sets of spectral reflectance 
functions, corresponding to plausible experimental object sets: 1) the reflectance functions of the X-Rite 
ColorChecker Classic, 2) the spectral reflectance functions of a selection of common fruits and vegetables, 
and 3) the spectral reflectance functions from a recent experiment [Royer and others 2016]. Using a set of 
344 SPDs, custom average color fidelity and average gamut area measures were calculated for each object 
set using the conceptual methods of TM-30 Rf and Rg, respectively. The custom measures were compared to 
standard values for the TM-30 measures, as well as CIE Ra. 
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2 Methodology 

2.1	 Spectral Power Distributions 
This analysis is based on the set of 318 SPDs from the IES TM-30 Calculator Tool Library, which includes a 
variety of commercial, experimental, and theoretical light sources. This set was augmented with the 26 SPDs 
used by Royer and colleagues [2016]. The SPDs provide a wide range of possible conditions, with Rf values 
ranging from 14 to 100 and Rg values ranging from 45 to 125. Characterizations of the SPDs are shown in 
Figure 1. This set of sources was also used in [Royer 2016]. 

Figure 1. Characterization of the 344 sources comprising the dataset used in this evaluation. 
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2.2	 Object Sets 
This analysis is based on three object sets: a set of 122 spectral reflectance functions representing the 
variety of experimental objects from [Royer and others 2016] (Experiment), a set of 11 spectral reflectance 
functions for the produce in [Royer and others 2016] (Produce)—including two red apples, a green apple, 
cranberries, a grapefruit, an orange, dried banana chips, a lemon, a green pepper, blueberries, and a purple 
cabbage—and the 18 spectral reflectance functions from the non-grey samples of the X-Rite ColorChecker 
Classic (CCC). All of the spectral reflectance functions were measured using a factory-calibrated Minolta CM
600d spectrophotometer. 

2.3	 Color Rendition Measures and Calculations 
Custom average fidelity measures were calculated for each of the three object sets using the same 
procedures as TM-30. Given the features of the object sets, it was only possible to calculate custom average 
gamut area values that adhered to TM-30 Rg procedures using the full set of experimental objects. For the 
produce and CCC sets, samples were not included in each of the 16 hue angle bins, which are used to 
determine the vertices of the TM-30 gamut area polygon. For these two sets, average gamut area was 
calculated using a polygon formed by the furthest outlying color samples. Because this is somewhat 
different from the TM-30 procedure, a second alternative calculation was performed for all datasets, based 
on the average difference in chroma (ΔC) of the samples, using the formula for chroma (C) defined in 
CIECAM02 [Fairchild 2013]. In this analysis, the average ΔC across all samples in the set was scaled by a 
factor of 6.82, as well as adjusted so that the reference had a value of 100, as shown in Equation 1 (where n 
is the number of samples in the set). The scaling factor was determined so that the TM-30 Rg and ΔC values 
for the TM-30 CES across the CIE F Series illuminants were equal (93.0). 

𝑛𝑛

∆𝐶𝐶 = 100 + 6.82 
∑1 𝐶𝐶𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝐶𝐶𝑖𝑖𝑟𝑟𝑡𝑡𝑟𝑟 Equation 1 

𝑛𝑛 

Figure 2 compares values for ΔC to values for average gamut area for the four datasets. As shown, there is 
strong correlation between the measures, with perhaps 10 to 20 outliers. The outlier points were highly 
structured SPDs with relatively low fidelity: color-mixed LEDs and mercury vapor lamps. Hue shifts influence 
the average gamut area, but not the average chroma shift, leading to the noticeable differences between 
the two measures for sources that induce substantial hue shifts. 

The custom values were compared to standard values for the TM-30 Rf and Rg, as well as CIE Ra, for the 
entire set of 344 SPDs. Average ΔC values were also calculated for the 99 color evaluation samples (CES) of 
TM-30 in order to serve as the baseline. The level of correlation between the custom and standard values is 
an indicator of how well the standard measures capture color rendition for the specific object sets. Also 
important is the magnitude of the residuals, which indicates the error for a given source. 

Another important consideration in defining the custom calculations is the scaling factor used for average 
fidelity calculations. As a default, the scaling factor used for Rf was also used for the custom fidelity 
calculations, because the intent was to compare potential visual scenes to the characterization of lighting 
according to standardized CES/TM-30 calculations. This analysis is not focused on evaluating the described 
object sets for potential use in color rendition measures. Normalizing the scaling factors would reduce the 
differences in values across the sample sets, revealing only the effects arising from spectral features; 
however, this normalization would not occur if the samples were viewed in a physical environment, which is 
the key distinction of this analysis. That is, this analysis investigates how viewed objects differ from 
standardized sample sets. The implications of maintaining or normalizing scaling factors is shown later, 
where data using the constant scaling factor is contrasted with data calculated by adjusting the scaling 
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factor so that the average fidelity scores for the CIE F Series illuminants is equal to that calculated for CIE Ra 

and TM-30 Rf. 

Figure 2.	 Average change in chroma (ΔC) versus average gamut area for the set of 344 light sources, using the 
four different sample/object sets. The outlier points are mostly highly structured SPDs (e.g., color 
mixed LEDs, HID) with low fidelity. 
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3 Results 
Several measures of the difference in average fidelity, average chroma shift, and average gamut area values 
between the object sets and the 99 CES are provided in Table 1. The data are based on subtracting the 
standard value based on the 99 CES from the custom value based on the identified object set. 

Table 1.	 Statistics for the difference in custom values versus TM-30 Rf, ΔCCES, and TM-30 Rg for each of the 344 SPDs. Positive 
values indicate the custom value is greater than the standard value. 

Difference for Difference for Custom 
Custom Average Fidelity Difference for Average Gamut Area 

vs. TM-30 Rf Custom ΔC vs. ΔCCES vs. TM-30 Rg 

Exp. Produce CCC Exp. Produce CCC Exp. Produce CCC 
Minimum -4.5 -16.8 -44.8 -13.8 -24.2 -10.6 -3.5 -10.6 -7.9 
Mean 1.2 -1.9 -18.4 -0.9 -4.7 2.0 0.2 0.7 2.7 
Maximum 7.3 9.3 1.7 9.8 25.9 17.2 5.0 13.0 33.4 
Range 11.8 26.1 46.5 23.6 50.1 27.9 8.5 23.6 41.3 
St. Dev. 1.6 4.1 11.3 2.9 7.0 3.8 1.3 3.2 4.3 

3.1	 Average Fidelity Results 
For the experiment object set, the custom average color fidelity calculations had a very strong correlation (r2 

= 0.98) with TM-30 Rf, as shown in Figure 3. (Note that Figure 3, like others in this report, shows the region 
of most relevance, rather than all sources that were used to determine the values in Table 1.) This match is 
not surprising, given that the goal of choosing the objects was to obtain a set with even coverage of color 
space—a goal in common with the selection of the TM-30 CES. The average difference for the 344 pairs of 
average fidelity scores was 1.2 points, although average fidelity scores differed by as much as 7.3 points 
among the 344 SPDs in the dataset. The total range in values was from -3.4 to 7.3 (10.7 points), with positive 
values indicating the Rf under-predicted the average color fidelity of the experimental objects and negative 
values indicating that Rf over-predicted the average color fidelity of the experimental objects. 

For the produce object set, the custom average fidelity was as much as 16.8 points lower than predicted by 
TM-30 Rf, and differed by -1.7 points on average. The correlation was still very strong (r2 = 0.92). The color 
distortions one would experience if viewing only this bowl of produce were less similar to those generalized 
by TM-30 Rf than if the full experimental object set was viewed. The total range, or “error”, was 26.1 points. 
This is substantially larger than what is generally considered a meaningful difference in fidelity (about 10 
points), even if such rules-of-thumb have been shown to be less useful given the importance of gamut shape 
[Royer and others 2016]. As is generally the case, the greatest differences were for sources with highly 
structured SPDs, such as color-mixed LEDs and high-intensity discharge (HID) lamps. 

Finally, average fidelity values using the CCC samples showed the greatest disparity with TM-30 Rf. 
Differences for individual SPDs were as great as -44.8 points, with an average of -18.0 points and a range of 
45.5 points. In almost all cases, TM-30 Rf over-predicts the average color fidelity (or color difference) that 
would be experienced by an observer viewing on the CCC. In addition to color-mixed LEDs and HID lamps, 
some phosphor-coated LEDs also demonstrated large differences—although they were low-fidelity sources 
more suited for street lighting than architectural interiors, where color rendition measures are most 
applicable. 
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Figure 3.	 Comparison of average color fidelity for three object sets 
versus standard TM-30 average fidelity (Rf) calculations. The 
correlation (identified using the coefficient of determination, 
r2) and the magnitude of residuals (the difference between 
specific values) are dependent on the spectral features and 
average chroma of the object sets. Note that 7 SPDs (2%) 
with TM-30 Rf values less than 50 were removed in these 
plots, because the logarithmic adjustment used in TM-30 to 
prevent negative scores makes the relationship nonlinear. 

These three results can be traced to the specific (a', b') 
coordinates of the samples in each set (Figure 4), which 
varied substantially in distribution in hue and chroma 
(Figure 5). Using the data from Royer and colleagues 
[2016], it can be shown that fidelity tends to be related to 
the chroma of the sample—samples with higher chroma 
tend to shift more (Figure 6), resulting in lower average 
color fidelity. This is also visible in the data presented by 
David in analyzing color fidelity over large sample sets 
[David 2013]. The end result is that object sets with 
greater average chroma will tend to have lower fidelity 
values, as was the case with the CCC and produce sets 
considered here. In practice, study participants viewing a 
set of objects that is more saturated than the 
standardized sample set will base evaluations on greater
than-predicted distortions; thus, using their responses to 
develop specification criteria may be inappropriate. 

Importantly, in the different average fidelity measures 
that have been proposed, this has been addressed 
through a scaling factor that sets the overall range of 
values [David and others 2015; Davis and Ohno 2010], yet 
it is still a practical consideration when choosing objects 
to be viewed in an experimental setting. The scaling 
factor addresses the slope of the lines in Figure 3, but 
does not account for the variation from the trend line, 
which is due to the spectral features of the samples and 
the distribution within hue space combined with the 
spectral features of the SPD. Figure 7 is analogous to 
Figure 3, but uses custom average fidelity values with 
sample-set-specific scaling factors. 

The variation from the trend line, or residuals, of the 
comparisons shown in Figures 3 and 7 are specifically related to the characteristics of the spectral 
reflectance functions (Figure 8) and the resulting CAM02-UCS coordinates. That is, they originate from 
differences in color space uniformity and wavelength uniformity/spectral features (Figure 9) [David and 
others 2015], two key considerations during the selection of the TM-30 CES [David and others 2015; Smet 
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Figure 4. 	 CAM02-UCS (a', b') coordinates of 
the samples in the four sets in the a'-
b' plane of the CAM02-UCS. The 
coordinates were determined using 
3500 K Planckian radiation, which was 
an arbitrary choice. The TM-30 hue 
angle bins and their corresponding 
numerical identifier are also shown. 

Figure 5.	 Visualization of the differences 
between the four sets of 
samples/objects. The pie charts are 
colored based on approximations for 
the 16 hue angle bins. Both the 
distribution in hue space and average 
chroma vary for the four sets. Note 
that even for the TM-30 CES, the 
distribution of samples in the 16 hue 
angle bins is not even, reflecting the 
fact that color space is not spherical. 
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Figure 6. Average color shift (top) and standard deviation of color shift (bottom) for the 
experimental object set illuminated by the 26 SPDs used by Royer and colleagues 
[2016]. As object chroma increases, the chromaticity tents to be less stable from 
light source to light source. 

and others 2015]. Because the experiment object set most closely mimics the coverage of color space of the 
TM-30 CES, it has the smallest residuals. Like all of the object sets, it does not have the same wavelength 
uniformity, which likely contributes to the differences. The range of the difference between rescaled custom 
average fidelity values and the standard Rf calculation for the experiment object set is 13.2 points with a 
standard deviation of 1.6. The CCC dataset also offers a relatively even coverage of hue space, but the 
samples are not evenly distributed in chroma. As a result, the difference between the rescaled custom 
average fidelity values and the standard Rf calculation is as 15.7 points with a standard deviation of 2.0 
points. Then there is the produce set, which lacks both uniform coverage of color space and has spectral 
features that are much different from a generalized set of objects. As a result, the range in difference 
between the rescaled custom average fidelity calculation and the standard Rf calculation for a given SPD is 
18.1 points with a standard deviation of 3.0 points. 
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Figure 7.	 Comparison of average color fidelity for three object sets 
versus standard TM-30 average fidelity (Rf) calculations. In 
this case, the scaling factor for each of the custom average 
color fidelity measures was adjusted using the same 
procedure that was used to calculate TM-30 Rf. As such, the 
correlations are about 1:1 on average, but there is still 
variation due to features of the spectral reflectance 
functions. 

Finally, it is contextually important to see that using the 
CIE Ra scheme to calculate average color fidelity results in 
substantially higher score difference ranges for the 
experimental objects and the produce, but a smaller 
range for the CCC (Table 2, Figure 10). In all cases, the 
difference is toward over-prediction by CIE Ra, ostensibly 
because all three object sets have higher average chroma 
than the pastel TCS employed in the CIE method. Two 
other key observations emerge: 

•	 The issue of non-uniformity in red region of the CIE 
U*V*W* color space is readily apparent, with the 
values calculated using the produce object set—filled 
with mostly red and orange objects—substantially 
lower than the standard calculation. Many are 
familiar with this issue because of the unusual scale of 
CIE R9. 

•	 The difference for the average fidelity of the CCC set 
is lower when compared to CIE Ra instead of TM-30 Rf. 
This is principally because both the CIE Ra and CCC 
samples are from the Munsell system, which relies on 
a limited number of pigments [Cohen 1964]; that is, 
they have similar spectral features. This further 
highlights the role of spectral uniformity in sample 
sets for evaluating color rendition. 
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Figure 8. Spectral reflectance functions for the three non-TM-30 object sets included in this 
analysis. 
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Figure 9.	 Wavelength sensitivity of the four sample/object sets. For more information on 
wavelength sensitivity, see [David and others 2015]. 

Table 2. Statistics for the difference in values for custom average fidelity, calculated 
using the CIE CRI procedures but alternative color samples, versus CIE Ra. 

Difference in Average Fidelity versus CIE Ra 

Experiment Produce CCC 
Minimum -25.1 -58.4 -27.0
 
Average -2.3 -16.7 -8.0
 
Maximum 17.6 2.5 2.1
 
Range 42.8 60.9 29.2
 
Standard Deviation 5.5 11.7 5.4
 

3.2	 Average Gamut Area Results 
In contrast with the results for average color fidelity, differences in average gamut area calculated for the 
three object sets versus the TM-30 CES were smaller, on average (Table 1). This likely arises because average 
gamut area calculations are not dependent on a scaling factor, which makes the relationships generally 
closer to 1:1. In other words, average gamut area is a relative measure, so the average chroma of the color 
samples has much less influence on the characterization. Plots showing the correlation between average 
gamut area values calculated using the three object sets versus the standard TM-30 Rg values are provided 
in Figure 11. 

Although the underlying math leads to small average differences in the three comparisons, the range of 
differences was similar to that found for average color fidelity, with the CCC set having the largest range and 
the experimental set having the smallest range. For particular light sources, the viewed object set can have a 
profoundly different average gamut area than is predicted by the TM-30 CES. Especially for the produce and 
CCC sets, the TM-30 CES tended to under-predict the average gamut area; that is, TM-30 values would tend 
to be lower than the average gamut area experienced by an observer looking at the three object sets. Again, 
the largest differences are for highly structured SPDs, which tend to stress color rendition measures. This is 
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Figure 10. Comparison of average color fidelity for three 
object sets (using CIE Ra formulas) versus 
standard CIE Ra calculations. The correlation 
and magnitude of residuals is dependent on 
the spectral features and average chroma of 
the object sets. 

Figure 11. Comparison of average gamut area for three 
object sets versus TM-30 Rg. The correlation 
and magnitude of residuals is dependent on 
the spectral features and average chroma of 
the object sets. 
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important to keep in mind as such sources become more 
prevalent, which may come in the form of color-mixed LED 
sources or laser diodes, for example. 

Again, the takeaway is that the visual stimulus of a given 
object set may vary substantially from what is calculated by 
TM-30, depending on the exact source. For many sources, 
the difference is small, but for some highly-structured SPDs, 
the difference can be quite large. The difference depends 
on the exact features of the sample/object sets, such as 
color space and wavelength space uniformity, in 
combination with the features of the SPD. 

3.3 Average Chroma Shift Results 
In contrast with average fidelity versus TM-30 Rf and 
average gamut area versus TM-30 Rg, there are some 
differences in data patterns among the three object sets 
when evaluating ΔC. As with the other comparisons, the 
experimental object set is most similar to the standard TM
30 sample set when determining average chroma shift of 
the 344 SPDs, with an average difference of -0.8 points and 
a range of 19.0 points (r2 = 0.99). Also similarly, standard 
TM-30 calculations provide a worse prediction of ΔC for the 
produce, with an average differences of -3.8 points and a 
range of 40.4 points (r2 = 0.93). The magnitude of the 
difference was similar for the CCC dataset, with an average 
of 3.4 points and a range of 32.2 points (r2 = 0.88), but the 
typical direction of the difference was opposite. These 
relationships are documented in Figure 12. 

Figure 13 plots the difference between ΔC for each object 
set and ΔC for the TM-30 CES (ΔCCES) against TM-30 hue 
angle bin 1 chroma shift (Rcs,h1). For the experiment and 
produce object sets, when the SPD increases red saturation 
(that is, increases Rcs,h1), the custom ΔC value tends to be 
higher than the ΔCCES, with the opposite true when the SPD 
decreases red saturation. There is less of a relationship for 
the CCC dataset, ostensibly because most of the samples 
are highly saturated and therefore the custom measure is 
(almost) always greater than the standard measure. These 
results are related to the effect of chroma level on color 
shifts, which was documented in Figure 6. 

Figure 12.	 Comparison of average chroma change for 
three object sets versus average chroma 
change calculated using the TM-30 color 
evaluation samples. The correlation and 
magnitude of residuals is dependent on the 
spectral features and average chroma of the 
object sets. 
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Figure 13. ΔC versus TM-30 Rch,h1 for the three object sets. There is a clear pattern for the 
experiment and produce sets, but not the CCC set. 
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4 Discussion 
Color rendition measures attempt to simulate the effect of light on the color appearance of objects in a real 
environment, substituting a standardized set of objects for whatever might be present in a given space. This 
is a tradeoff between utility and accuracy, where color rendition measures have varying levels of 
applicability to any given environment, depending how similar the objects’ spectral reflectance functions are 
to the set of standardized samples used in the calculation. This makes the sample color set a critical part of 
any color rendition measure. It also means that using a set of objects in psychophysical experiments to 
derive meaning for a given color rendition measure must be done with great care. 

To date, standardized sets of colors, such as the TM-30 CES or the CIE CRI Test Color Samples (TCS), have 
been chosen based on predefined goals. In the case of TM-30, the goals included uniformity in color space 
and wavelength space, as well as the use of a relatively small number of spectral reflectance functions of a 
variety of real objects [David and others 2015]. In the case of CIE Ra, the TCS were chosen to have moderate 
chroma and approximately equal spacing in hue space. Other selection criteria could also be justified, as 
there is no known data that captures the distribution of spectral reflectance functions in real spaces—either 
on average or for any particular type of space. 

In practice, an ideal set of color samples would be one that matches the objects in the space in question. 
Absent technology to measure (or know) the spectral reflectance functions of the objects present in a given 
space, calculating space-specific color rendition measures will remain practical for only the very most critical 
of applications, such as the Sistine Chapel [Schanda and others 2016]. Alternatively, a good set of color 
samples might be the one that best represents the average of all interior environments, with a sufficient 
number of samples to predict a complete set of visually different colors with minimal error. However, it 
would be essentially impossible to quantify an “average” interior environment, nor would that environment 
be representative of any specific environment. The end result is that any sample set must be chosen using a 
justifiable set of criteria. 

Because the TM-30 CES, like any other samples, do not perfectly represent any given illuminated space, 
accommodations must be made when interpreting the results and predicting how a given space will appear. 
If a somewhat detailed color profile of a space is known, a TM-30 user can more carefully evaluate the hue-
bin specific sub-indices to better understand how the most important objects will be rendered. One may 
also just use color rendition measures as a first pass, with visual evaluation ensuring satisfaction. Critically, it 
is important to recognize that small differences in average values (e.g., Rf, Rg), especially for disparate source 
types, are likely to be overshadowed by the mismatch induced by the difference between the standardized 
sample set and the objects in a given space, not to mention the effects of gamut shape [Royer and others 
2016; Wei and others 2016a; 2016b]. Two sources with the same average color fidelity and the same 
average gamut area may make objects look different. In short, standardized color rendition measures are 
valuable, but the limitations should be understood. 

4.1	 Implications for Experiments 
Perhaps more germane to the analysis presented here is the practical relevance of the described differences 
to choosing experimental object sets and generalizing research findings, especially when the goal is to 
correlate perceptual meaning, such as preference or acceptability, with numerical quantifications. Again, 
this article is not focused on the merits of any given sample set for use in standardized calculations. 

As shown in this analysis, there can be substantial differences between viewed color differences for a given 
object set—such as the CCC, which has been used in numerous experiments—and the quantification of the 
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light source using TM-30 (or any other measure). If the goal is to understand acceptability at a given fidelity 
value, for example, the mismatch between calculated and viewed color distortions can cause substantial 
error, which may be further amplified later when an established value is applied to a real space that is unlike 
the evaluated colors or the standardized test colors. In other words, a researcher using only the CCC to 
establish a preference model based on the TM-30 measures may determine that an Rf value of 90 is 
necessary for a given perception. However, the color shifts of the CCC are typically much larger than 
predicted by TM-30—and likely larger than any space that is not filled with highly saturated colors— 
meaning 90 may be an artificially high threshold. These types of erroneous findings may stem from overall 
differences in the chroma of the evaluated and standardized samples, which tend to affect all SPDs similarly 
(that is, changing the slope of the lines in Figures 3, 10, 11, and 12). They may also stem from differences in 
the samples’ coverage of color space or wavelength space, which are more likely to result in selective error 
depending on the features of a given SPD (that is, the range of values presented in Tables 1 and 2). 

When designing color perception experiments, researchers must decide on all contextual factors (culture, 
application/objects, illuminance, and chromaticity/chromatic adaptation), as well as the source(s) under 
which the judgment is made, sorting through innumerable options weighed against the constraints of 
limited resources. This has led to different tradeoffs being made in the numerous experiments in this field. 
While the tradeoffs are necessary, it is important to understand the resulting limitations. One of the most 
difficult challenges is deciding on the objects that will be viewed. 

Based on the analysis presented here, the selection of color samples for evaluation should be paid careful 
attention. As a compromise to the ideal of space-specific color rendition measures, a series of application-
specific experiments, using objects typical of the space, could be performed in order to develop criteria or 
models for those applications. This would require substantial work, and may even be too detailed, given the 
wide variety of spaces within a given application and the wide variety of personal preferences regarding 
color appearance. But, it would likely produce better results than the current use of a one-size-fits-all 
criterion for all applications. In the meantime, choosing experimental objects with properties similar to 
those of the measure being evaluated, such as the TM-30 CES, is a reasonable approach and a promising 
method for establishing performance criteria or models, because it eliminates one level of discord when the 
criteria or models are then applied to real applications. 

Other important considerations for the selection of experimental object sets include: 

1.	 The familiarity of the objects. Preferred color distortions have been linked to how we remember 
colors [Smet and Hanselaer 2015a; Smet and others 2011; Smet and Hanselaer 2015b; Smet and 
others 2014; Smet and others 2010], which is typically more saturated than reality [Elliot and Maier 
2014]. Whether none, some, or all of the objects presented to an experiment participant are familiar 
may influence his or her perception of various distortions. No study has specifically examined this 
variable using a priori hypotheses. 

2.	 The area subtended by different objects. With IES TM-30 and CIE Ra, each sample is given equal 
weight. In an experiment endeavoring to use real objects, finding representative items with equal 
size is not realistic. As such, different objects—representing different hues, chromas, and 
lightnesses—will subtend different areas of the visual field. Objects subtending larger areas may 
prove more influential, although this has not been specifically examined. It is also possible that color 
psychology or object familiarity could overwhelm any effect due to object area. 

3.	 The placement of objects within the space. As with the area subtended by the objects, their 
placement in a room or booth may also influence experimental outcomes. Even the choice of a 
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room or booth is important, although it has not been explicitly studied, ostensibly because the 
objects used in a room would not fit in a booth. One might theorize that booths are further removed 
from the architectural context in which measures of color rendition are intended to be used, and 
therefore a weaker experimental tool, but this has not been proven. 

4.	 The total quantity of objects. Should the number of objects be limited to ensure that each 
participant keys in on the same information, or should a greater number of objects be presented to 
have participants consider a more complex stimulus, like they might in a real situation? This is 
another important consideration for which the implications have not been formally investigated. 

Alas, even if the spectral reflectance functions of an experimental object set can be made similar to those of 
the standardized sample set for the measure that is being evaluated, these other factors could influence the 
resulting perceptual correlates and any derived specification criteria. As with object sets, there can be no 
perfect experimental space, because all real spaces will vary in all four of the listed considerations. The only 
fail-proof method for the specification process is visual evaluation of a light source in the intended space. 
Given the impracticality of this approach, it is likely that measures of color rendition will always have a place 
in the lighting industry; it is paramount that the limitations of the measures themselves—and any 
subsequently derived criteria—are understood. A consensus on specification criteria is only reasonable after 
multiple experiments that vary the above considerations have been conducted. 
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5 Conclusions 
This paper examines the relationship between a viewed stimulus, which is an interaction between a spectral 
power distribution and a set of spectral reflectance functions for a group of objects, and the rated stimulus, 
which is an interaction between the same spectral power distribution and a standardized set of spectral 
reflectance functions. Because of the differences between these two conditions, which can be quite 
substantial, specifiers must be cognizant of how color rendition measures apply to architectural spaces and 
researchers must be careful in selecting the objects presented to experiment participants. 

A standardized set of color samples used for rating the properties of a light source, independent of 
application, is essential for commerce, and provides a first pass indication of how a source will render 
objects. However, it is critical for users to understand the differences between the standardized sample set 
and any given application when interpreting the values of TM-30 measures—or those of any other color 
rendition measure. Use of TM-30 sub-indices for specific hues may be warranted. In the most extreme cases, 
custom measures can be calculated based on the objects in the space under considerations. 

For researchers, the results of this paper show the substantial effect that the chosen object set may have on 
the findings of an experiment. If developing application-specific criteria or models is the goal, objects’ color 
characteristics should represent that application as best as possible. If developing generalized criteria or 
models is the goal, using an experimental object set with color characteristics similar to those of the 
measure in question is advised. The spectral reflectance functions of the objects is just one of several factors 
related to experimental objects that can influence the accuracy of resulting specification criteria. 
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