

Operational Experience using the Combined Electrolysis and Catalytic Exchange (CECE) Tritium Compatible Rig

Presented by: Todd Whitehorne

39th Tritium Focus Group Meeting, Oak Ridge, Tennessee 2018 May 15-17

Canadian Nuclear Laboratoires Nucléaires Canadiens

Design Intent

- Operate a small scale Combined Electrolysis Catalytic Exchange (CECE) rig for active materials testing while under operational conditions.
 - Recombiner catalyst
 - LPCE catalyst
 - Cell materials
 - Proton Exchange Membranes, Electrode Catalysts
- Maximum concentration of 1000 Ci/kg water
- Small closed loop system

Secondary Enclosure Glove Box

- Secondary Enclosure: Inert Atmosphere positive pressure Ar Glove Box
- Continuous moisture monitoring - dewpoint transmitter
- Continuous tritium measurements using 1L ion chamber
- Automated atmosphere control using a PLC

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Secondary Enclosure Cleanup (SEC)

- Molecular Sieve bed
 - Cycles through to maintain a user defined dewpoint
- Ti bed
 - Cleanup of O₂ (decrease atmospheric formed HTO)
 - Cleanup of T₂, N₂
- Ni bed
 - Cleanup of Organically Bound Tritium

CECE-T Rig: Simplified

- Welded tubing with VCR connections where necessary
- Gravity fed water supply
- Tritium compatibility
- Metal bellows pump
- Closed loop system (cell«»recombiner)

Electrolyser Cell

- Proton exchange membranes
 - Nafion[®] (reference material)
 - CNL Tritium Compatible Membrane
- Membrane Electrode Assembly (MEA)
 - CNL prepared electrode catalyst
 - MEAs pressed on site
- Cell operation @ 60 °C

Canadian Nuclear Laboratoires Nucléaires Laboratories Canadiens

Electrolyser Enclosure

- Electrolyser is the most likely leak point within the rig
- Low point
- Enclosure allows for gas cycling through molecular sieve beds to trap tritiated water in the event of a cell leak/rupture

Electrolyser Cell - Deficiency

Canadian Nuclear

aboratories

Laboratoires Nucléaires

Canadiens

- Secondary cell enclosure does not allow for leak monitoring.
- Forced to monitor rig water levels for leaks.
- During inactive commissioning, found standing water inside the enclosure

Electrolyser Cell - Solution

- Modified faceplate to clear polycarbonate with a gasket.
 - Able to tighten cell components following cell conditioning.
 - Able to visually inspect for
 - leaks.

• Discovered water was diffusing slowly from the cell

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Electrolyser Cell

- PEEK capping layer
- Tight tolerances ensure a tight fit of fully hydrated MEA
- Thickness of PEEK film designed to be slightly smaller than a fully hydrated MEA
- In plane expansion is minimal

Bellows Pump Vibration

- Pumps are solidly mounted on common base within the GB
- Results in excessive noise, and vibration to the rig
- Direct hard-pipe connections changed to flexible hose
- Rubber mounts installed on the base

Tritium Injection Method

- To initiate active commissioning, a small amount of tritium was added from tritiated gas mix.
- Found this to be preferred tritium injection method.
- Elemental tritium introduced to the rig using a calibrated volume loaded with gas from tritium gas dispensing system. Fill to less than atmospheric pressure
- Removal of uranium bed/heater.
 - Remove the permeation hazard
 - Removed elemental tritium hazard

Glove Atmospheric Conditions Assessment

- Removal of uranium bed, Ti, and Ni beds
- Hazard in the GB is HTO only, originating from the rig (very low elemental inventory < 1 Ci)
- Knowing the concentration of HTO in the rig (1000 Ci/kg)
- The GB atmospheric HTO can be regulated by controlling the dewpoint. This controls the overall system emissions.

(Actual total inventory of tritium is ~200 Ci)

Glove Atmospheric Conditions Assessment

Calculated Atmospheric Tritium Concentration vs. Dew Point Values

Continuing Work CECE-T Rig

- Step up concentration to 1000 Ci/kg
- Materials testing of PEMs, and CNL proprietary membranes over long term

Canadian Nuclear | Laboratoires Nucléaires Laboratories | Canadiens

Thank you Questions?

Contact Information:

Todd Whitehorne, PhD CNL Tritium Facility R&D Scientist E-mail: <u>Todd.Whitehorne@cnl.ca</u> Phone #: 1-613-584-3311 ext: 46918

