Long-Term Storage of Tritium in Titanium

José A. Cortés-Concepción
Savannah River National Laboratory
Background

- Titanium is stable readily available material
 - High storage capacity
 - Cost-effective
 - Stable in air
 - Good helium retention
- Available mostly as powder and sponge
- Requires activation at high temperatures ~600 °C
- Presents a complex phase diagram
- Formation of 3He due to tritium decay
 - May affect absorption/desorption properties
 - May cause tritium trapped in the lattice
- The 3He is retained in the matrix until an accelerated release point
 - Literature indicates to be between 0.23-0.30 3He/Ti at room temperature
Background

- Program started to support development of tritium thermal generator (TTG)
 - Titanium reduces SS-tritium compatibility issues
 - 3He will be mostly retained in the hydride matrix
- SRNL-Sandia collaboration

45.6 g HCRH Ti-foil
(D+T)/Ti=1.90
1.17 g tritium

3003 Al tube
Mott grade-20
316SS frit

Titanium foil stack for TTG
Background

• Pd-coated Titanium foil does not require activation
• Film thickness ~180 nm
• Available commercially as getter
• Mechanism not completely understood
 – Increase in rate of absorption and dissociation
 – Low desorption energy might cause a more evenly distribution of hydrogen in titanium
• Relatively little work on Pd-coated titanium and long term temperature effect
Main Task: Monitoring 3He release by measuring pressure from the sample bottles.

<table>
<thead>
<tr>
<th></th>
<th>-60°C</th>
<th>20°C</th>
<th>180°C</th>
<th>300°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>100% tritium</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>50% tritium</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0% tritium</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>
Results

- Low pressures observed compared to predictions
- No correlation with storage temperature
- Accelerated release point occurs later than predicted
Summary

- Tritium-loaded samples are only starting to show significant 3He release.
- 24 samples completed on current FY
- Later than expected (~7 yr vs. 3-4 yr).

- Lower 3He releases than predicted
- Results suggest a more compact design for a TTG might be technically feasible.
Conclusions

• Results support the feasibility of a potential design of a TTG
• Cost-effective and efficient mode of storage of tritium
• More compact designs are possible based on 3He releases observed
Acknowledgments

• Tom Warren
• Andrew Shugard
• Tonya Dominguez
• Stephen Hardee
• Mike Dalmaso
Questions & Comments