Distribution of Tritium in the Near Surface of 316 Stainless Steel

M. Sharpe and W. T. Shmayda
University of Rochester
Laboratory for Laser Energetics

Tritium Focus Group Meeting
Oak Ridge, TN
15–17 May 2018

- Tritium concentration (μCi/cm3)
- Distance into the metal (μm)
- Bulk solubility range
- Storage times: 33 days, 35 days, 40 days, 49 days, 68 days, 82 days, 83 days, 90 days, 233 days
- ZnCl_2 washes: 1.8 days, 1.9 days, 3 days, 2 days, 2 days
- Acid etches: 1.8 days, 1.9 days, 3 days, 2 days, 2 days
The near surface of stainless steel retains high concentrations of tritium

- Tritium concentration profiles were measured using a combination of a ZnCl₂ wash, followed by acid etching
 - separation of tritium in adsorbed water and bulk steel
 - etching resolution ~10 nm
- Tritium concentrations in the near surface (<10 μm) do not change significantly between 33 and 233 days of storage
 - suggests very slow diffusion
- Migration to the surface is observed when the surface is depleted of tritium by acid etching
Tritium binds to stainless-steel surfaces as tritiated water.

Liquid-like layers (physisorbed) are affected by changing relative humidity.

Ice-like layers (chemisorbed) are affected by changing temperature.

Hydroxyl layer

Metal oxide

Metal lattice

Adsorbed water layers contain a large number of potential tritium binding sites.

Solubility at 25°C and 1 atm ≈ 1.9 mol/m³
The surface water layer of adsorbed water also controls tritium egress.

- Remove adsorbed tritium by:
 - surfactant
 - chemical
 - plasma
 - heat
 - etc.

\[
\text{Solubility ratio} = \frac{S_{\text{surf}}}{S_{\text{bulk}}} = \frac{c_{\text{surf}}^{eq}}{c_{\text{bulk}}^{eq}}
\]
An aqueous ZnCl₂ solution is expected to displace all adsorbed water

- Tanaka et al.* measured hydroxyl concentrations using ZnCl₂ + NH₄Cl
- This method removes all hydrogen atoms from the surface but does not etch into the metal
- Measure liberated tritium using liquid scintillation counting

ZnCl₂ solution liberates adsorbed tritium.**

Diluted aqua regia used to dissolve stainless steel

- Aqua regia is a 3:1 mixture of HCl and HNO₃
 - two dilutions used
 - lower acid concentrations reduce etch rate
- Solid iron is oxidized to form iron(II) or iron(III) chlorides
- After etching, solutions brought to pH ~ 0 to measure using liquid scintillation counting
 - pH > 1 to 2 results in precipitation of iron hydroxide

Increasing etch time and/or acid concentration
Large surface concentrations indicate tritium retention in adsorbed water and metal oxide layers

Concentration profiles do not significantly change between 33 and 233 days of storage.

- Samples stored in individual storage pods under dry helium
 - dew point < −70°C
- Suggests presence of trap sites and/or slow diffusion

![Tritium concentration vs. distance into the metal](chart)

- ZnCl₂ washes

E27343

University of Rochester
Calculations suggest room temperature diffusion is very slow.

- Lowered diffusivity by a factor of 8×10^5 relative to the survey.
- Increased solubility by $5\times$ relative to survey.

\[
D = 3 \times 10^{-16} \text{ cm}^2/\text{s} \\
S = 2 \times 10^5 \mu\text{Ci/cm}^3 \ (6.9 \text{ mol/m}^3)
\]
Etching experiments show tritium migration to the surface

- Several etching series were performed
 - sample stored in air
 - ZnCl₂ wash post storage
 - short etch series

- ZnCl₂ washes after storage removed a large quantity of tritium
Summary/Conclusions

The near surface of stainless steel retains high concentrations of tritium

- Tritium concentration profiles were measured using a combination of a ZnCl₂ wash, followed by acid etching
 - separation of tritium in adsorbed water and bulk steel
 - etching resolution ~10 nm

- Tritium concentrations in the near surface (<10 μm) do not change significantly between 33 and 233 days of storage
 - suggests very slow diffusion

- Migration to the surface is observed when the surface is depleted of tritium by acid etching
Preloading the samples with H$_2$ or D$_2$ does not change the steady-state tritium concentration profiles

- Several samples preloaded with H$_2$ or D$_2$
 - 24 h, 1 atm, 25°C
- Similar concentration profiles observed
- Trapping not observed OR traps not filled in preloading