U.S. DEPARTMENT OF

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

HVAC Energy Savings and IAQ: Integrating Air Cleaning with Smart Ventilation

Lawrence Berkeley National Laboratory Dr. Brett C. Singer bcsinger@lbl.gov

This project is part of the US-China Clean Energy Research Center – Building Energy Efficiency program

Project Summary

Timeline:

Start date: 4/1/2016 Planned end date: 3/31/2021

Key Milestones

- 1. Demonstrate sorbent for VOC, formaldehyde & >40 mg CO_2/g capacity at room scale; Q4 of Y3
- 2. Submit Pre-Manufacture Notice to EPA for BASF Sorb300; Q4 of Y3
- 3. Air cleaning tool added to development version of Energy Plus, Q4 of Y4

Budget:

Total Project \$ to Date:

- DOE: \$600K Y1–Y2 (Mar-18); \$300K for Y3 (to Mar-19)
- Cost Share: \$1380K projected through Y3

Total Project \$:

- DOE: \$1500-1550K
- Cost Share: \$2300K

Key Partners:

US Partners	China Partners		
BASF USA	Tsinghua University		
United Technologies	Shenzhen IBR		
Johnson Controls (Y1)	Inst. of Bldg Envt & Energy Eff.		
eLichens (Pending)	Merchants Property Develop Corp.		

Project Outcomes:

Vision is for smart ventilation with integrated air cleaning and IAQ sensor feedback to be common in new buildings and HVAC retrofits, helping achieve BTO goal of 30% energy savings by 2030.

The project aims to develop and demonstrate air cleaning materials, air quality sensor applications, and building simulation tools that reduce energy and peak loads and improve indoor air quality.

Team

US TEAM RESEARCH: LBNL	Brett Singer (Lead)	With the second seco	Kiaochen Tang	Spencer Dutton	Kiwang Li
INDUSTRY:	D • BASF We create chemistry Ying Wu (Lead), Rachel (Rui) Dong, Mark T. Buelow	Catherine Thib Ellen Sun Zhipeng Zho	ogies Joh Daud ng	(Year 1) Clay Nesler	(Pending) Marc Attia
CHINA TEAM RESEARCH: Tsinghua Universitiy Itio		Xin Feng, Air Cleaning Tech Center, CABR (Co-lead) ad)	Institute of Building Environment & Energy Efficiency (CABR)	INDI Shenzher Building Co Merchan Developn	USTRY: n Institute of g Research o, Ltd nts Property nent Co, Ltd.

Challenge

Commercial buildings use outdoor air to dilute bioeffluents & indoor pollutants, creating large thermal conditioning loads that are unresponsive to system-wide demand signals

This approach is ineffective when outdoor air is polluted, either routinely or during events like wildfires.

Beijing seasonal air pollution guardian.com Jan 16, 2017 San Francisco during Sonoma wildfires

Solution: Smart ventilation with air cleaning enables HVAC energy savings, demand response, climate resilience, and improved IAQ with health and productivity benefits

Approach – Four Key Elements

- Efficient air cleaning technologies for CO₂, formaldehyde, VOCs and particulate matter (PM)
- Reliable, real-time data from **air quality sensor** networks
- Simulation tools for system design and controls
- **Demonstrations** of sensor-informed ventilation with integrated air cleaning

Approach – Four Key Elements

Advanced Air Cleaning Technologies

- Develop sorbents with high capacity for CO₂; some formaldehyde removal
- Pair with VOC removal and efficient particle filtration
- Detailed performance evaluations in lab, chambers, and buildings

IAQ Sensor Performance

- Evaluate consumer products (residential)
- Evaluate novel sensors
- Evaluate networked systems for commercial buildings
- Develop and demonstrate controls

Approach – Four Key Elements

Simulation Tools

- Inform design and sizing
- Estimate savings, demand response potential
- Python model of air cleaning system using parameters from lab performance evaluation
- Formally integrate into Energy Plus
- Adapt to industry tools, e.g. HAP

Demonstrations

- Prototype system for CO₂ and formaldehyde removal with regeneration (Y3)
- Residential formaldehyde removal system with Chinese team
- Demonstrations in buildings, Y4-Y5

Impact

Vision: The project will advance the use of air cleaning technologies to reduce ventilation-related energy and add demand response in commercial buildings

Products and Outputs

- Air cleaning materials that cost-effectively remove CO₂, formaldehyde and bioeffluents
- Simulation tools to guide system design and sizing and to maximize benefits
- Demonstrations of integrated air cleaning and ventilation driven by air quality and other sensor input

Target Impacts

- By 2030, 25% penetration of smart ventilation with air cleaning in commercial bldgs
- Potential HVAC energy savings of 10% to >50% by climate zone
- Annual savings of 56 TWh and 22 MMT CO₂ in US, 105 TWh and 44 MMT CO₂ in China

Progress – Air Cleaning Materials

Designed, constructed, & commissioned automated apparatus to repeat CO₂ and formaldehyde loading and regeneration though 30-50 cycles.

Evaluated loading and regeneration of BASF Sorb300 at varying T and RH.

 CO_2 capture not sensitive to humidity

Incomplete formaldehyde release during quick regeneration

Verified consistent performance for CO₂ through 36 cycles at 25°C, ~45% RH

Progress – Air Quality Sensors

Studied performance of consumer monitors that use PM_{2.5} sensors

- Funded mostly by Building America project
- Focus on residential sources but relevant to some commercial building applications

Demonstrated potential to use for control

- Response factors varied by source
- None of the low-cost sensors saw ultrafine particles; but...
- VOC sensor detected some of the sources that emitted ultrafine particles
- Combining VOC, CO₂ and particle sensors may enable more robust control

Progress – Simulation Tools

Built single-zone simulation tool to evaluate air cleaning benefits

- Energy Plus calculates energy savings from reduced ventilation
- Efficient, Python mass balance model tracks contaminant concentrations
- Tracks loading and regeneration vs. sorbent capacity

Industry consultations guiding simulation tool development

- Focus on adding air cleaning module to Energy Plus
- Create easy adoption pathway for industry design tools (e.g. Carrier's HAP tool)

Example analysis of annual energy savings smart ventilation w/air cleaning

Stakeholder Engagement

- Air cleaning equipment
 - Engaging various industry players (EnVerid, Honeywell, St. Gobain)
- Air quality sensors
 - Advising Building America team on ASTM test method for IAQ sensors
 - Information sharing with sensor and platform developers
- Simulation tools
 - Input from mechanical design engineers
 - Energy Plus development team
 - Carrier HAP team

Remaining Work – Year 3

Advanced Air Cleaning Technologies

- Evaluate performance through accelerated aging; varied temperatures
- Potential collaboration with Tsinghua Univ. to test in residential system
- BASF will file Pre-Manufacture Notice
- Report performance via conf. and journal

IAQ Sensor Performance

- Expand industry team with eLichens
- Investigate source identification using multiple sensors: PM, VOC, CO₂
- Chinese team working on sensors for VOC and formaldehyde

Workshop on Energy and IEQ in Chinese Residential Buildings – Berkeley, July 30-31

Temperature and humidity effects

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Remaining Work – Year 3

Simulation Tools

- Build out mass-balance air cleaning tool using lab-scale performance data
- Apply simulation tools to quantify air cleaning benefits & sizing
- Pre-evaluation tools for Chinese Buildings (Tsinghua) including source emissions database

Demonstrations

- Develop sorbent mix (BASF)
- Design, build commission apparatus
- Test protocol to simulate office day
- Conduct testing, analyze and report
- Identify sites for Y4 building demos

Thank You

Lawrence Berkeley National Laboratory Dr. Brett C. Singer bcsinger@lbl.gov

REFERENCE SLIDES

Project Budget

Variances: Y2 funding was \$40K less and Y3 is \$20K less than proposed; work plan adjusted by extending some subtasks.

Cost to Date: ~81% of Y2 (Work remaining mostly in demonstration task)

Additional Funding: Low-cost sensor / consumer monitor evaluation supported by Building America and EPA IAA.

Budget History						
Apr-2017 t (pa	o Mar-2018 ast)	Apr-2018 to (cur	o Mar-2019 rent)	Apr-2019 to Mar-2020 (planned)		
DOE	Cost-share	DOE	Cost-share	DOE	Cost-share	
\$280K	\$500K	\$300K	\$465K*	\$320K	\$565K*	

*Assumes \$25K per year eLichens and \$100K from demonstration partner in Y4.

Subtask Milestone / Deliverable 1.1 Evaluate regeneration at lower M1.1: Complete analysis of data to determine regen capacity at T=35-55 °C.

i i ojoot i iuli uli						temperatures. at T=35-55 °C.
						1.1.2 Assess the performance of aged M1.2: Develop sorbent aging procedure.
						sorbents. M1.3: Determine regen capacity of aged sorbent.
	•	-				1.1.3 Document and report new D1.1: Indoor Air 2018 conference presentation.
Tasks and Subtasks	Y3 (2018-19)	Y4 (2019	9-20) Y	75 (2020-	-21)	sorbent performance to experts D1.2: Manuscript submitted to journal.
	Q1 Q2 Q3 Q4	Q1 Q2 Q	3 Q4 Q	Q1 Q2 Q3	3 Q4	1.2.1 Sorbent for VOC removal. M1.4: Suitable VOC sorbent identified. 1.2.2 Prenare and PMN M1.5: Experiments to support PMN M1.6: PMN submitted
Task 1.1 Chamber testing of air cleaning materials						
1.1.1 Evaluate regeneration at lower temps	Μ					2.1.1 Identify and recruit sensor M2.1: Identify 5 potential partners; connect with CERC leaders and IAB as appropriate
1.1.2 Assess the performance of aged sorbents	M M					
1.1.3 Report new sorbent performance to technical experts	D D					3.1.1 Extend Python-air cleaning tool M3.1: Model outputs verified by comparison to lab data.
Task 1.2 Develop higher performance air cleaning materials						3.2.1 Develop model scenarios M3.2: List of parametric scenarios to model.
1.2.1 Select sorbent to add VOC removal	М					3.2.2 Demonstrate air cleaning M3.3: Complete modeling to determine system capacities.
1.2.2 Prepare and submit materials for PMN.	M M		Μ			system sizing function
Fask 1.3 Production scale up and commercialization						3.2.3 Conduct simulations to find M3.4: Complete set of parametric simulations.
1.3.1 Scale up to commercial volumes			Μ			annual energy, seasonal peak, IAQ
1.3.2 Produce sorbents for additional building testing	М	М	D		М	5.2.4 Analyze data and report results D5.6 reclinical report of presentation summarizing results.
Fask 1.4 RD&D on other technologies						4.1.1. Develop sorbent mixtures to be M4.1: BASF provides sufficient quantity of sorbent for
.4.1 Placeholder tasks for other air cleaning technologies			М		М	used in room-scale tests room-scale tests at LBNL.
Γask 2.1 Identify industry partners for IEQ sensing						air cleaning apparatus for testing. M4.4: Prototype installed.
2.1.1 Identify and recruit sensor platform providers	М		Μ			4.2.1 Develop protocol M4.4: Testing protocol is completed
Task 2.2 RD&D with IEQ sensor industry partners						4.3.1 Cx prototype system M4.5: Complete prototype commissioning
2.2.1 Placeholder for work with industry partners			Μ		D	4.3.2 Perform tests M4.6: Complete first room-sale performance tests
Fask 3.1. Develop mass balance model of air cleaning systems						4.3.2 Analyze data, report results D4.1: Presentation summarizing findings of demo
3.1.1 Extend Python-based, mass-balance air cleaning tool	М					
Task 3.2 Demonstrate simulation tools to quantify benefits						Tasks and Subtasks Y3 (2018-19) Y4 (2019-20) Y5 (2020)
3.2.1 Develop parametric model scenarios	М					Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3
3.2.1 Demonstrate air cleaning system sizing function	М					Task 4.1 Design prototype air cleaner for room-scale testing
3.2.3 Simulations of annual energy, seasonal peak, and IAQ impacts	M					4.1.1 Develop sorbent mixtures to be used in room-scale tests M
3.2.4 Analyze data and report results	D					4.1.2 Design and fabricate prototype apparatus for room-scale testing. M M M
Fask 3.3. Connect python air cleaning system tool to Energy Plus						Task 4.2 Develop test protocol for room-scale chamber
3.3.1 Submit air cleaning model to EnergyPlus development team		М	D			4.2.1 Develop protocol to evaluate sorbent performance M
3.3.2 Incorporate into local development version of EP			М	D		Task 4.3 Demo in room-scale chamber at LBNL
3.3.3 Coordinate with Carrier to roadmap addition to HAP tool			М		D	4.3.1 Commission prototype system M M
Fask 3.4 Expand model capabilities for system optimization						4.3.2 Perform tests M M
3.4.1 Use simulation tools to improve air cleaning system controls	1	М	М	D		4.2.3 Analyze data and report results D D
Fask 3.5 Add health impacts to tool and assess benefits						Task 4.4 Demos/Evaluations at other sites (TBD)
3.5.1 Add health impacts from exposures to model calculator			М	D		Task 5.1 Reporting
Task 3.6 Apply models to IAQ and energy savings in comm bldgs						5.1.1 Quarterly Reporting D D D D D D D D D D D D D D D D D D D
3.6.1 Validate and improve the air cleaning simulation model			М		D	5.1.2 Peer review, work scope update, final report D D
3.6.2 Run parametric simulations to estimate energy and health benefit	s		М		D	Task 5.2 Workshop on Energy & IEQ in Chinese homes D