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SETO Historical Funding and Range for FY 2018
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Half the Cost, More than Double the Solar
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Moving Beyond Levelized Cost of Electricity

Seattle, WA

10¢/kWh LCOE 2016
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Solar Resource Across America
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electricity” (LCOE) based on:
(Upfront Installation Price + Lifetime
] Operational Expenses ($)* / Net Present
Value of the Power Produced (kWh)
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*Lifetime operational expenses are calculated
based on average solar resource locations,
represented by Kansas City, MO, and also
calculated for Daggett, CA (high resource) and
Seattle, WA (low resource).

LCOE does not include the federal investment
tax credit (ITC) or state or local incentives.
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Emerging Issues

* LCOE as a metric requires clarification
Depends on location, time of day and financial assumptions
Depends on project scale even when hardware costs don’t

* Deployment is strongly dependent on policy
Focus on conservative policy scenarios (e.g. no ITC)
Standardization of installations, especially storage
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Power Sector Models
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Multi-scale Grid Optimization
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Demand: NREL’s Regional Energy Deployment System

* ReEDS models the future deployment in the USA of:
* Electric generation capacity (renewable and non-renewable)
*  Transmission capacity between 134 balancing areas
- Distributed PV (dGen model) i
*  Energy storage (UPV & DPV)

* Selections are made to:
* Meet projected growth in demand
* Replace power plants scheduled for retirement
* Fulfill policy requirements (as currently enacted)
*  Minimize the total system cost for the nation as a whole
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Current PV Power Plant Installations and Potential Grid Upgrades
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Role of Artificial Intelligence

” e i > .
Ke Jie “ AlphaGo sees the whole universe of Go, while 1
could only see a small area around me... it's like 1 play Go
in my backyard, while AlphaGo explores the universe.
Machine Learning can be used to automatically manage
electricity distribution and learn to forecast energy use.
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Solar forecasting can help utilities and grid operators better predict solar generation
levels and make it easier to meet consumer electricity demands on a day-to-day basis.

Using machine-learning, the same technology behind the Jeopardy! playing robot Watson, IBM
improved solar forecasting accuracy by as much as 30%.

When utilities and grid operators better understand generation patterns, they’re able to maximize solar

resources, operate more efficiently, and improve solar energy’s economic competitiveness.
SOLAR ENERGY
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Microgrid Resilience Case Example : New Orleans, LA

Leveraging the broad set of capabilities in DHS-sponsored
National Infrastructure Simulation and Analysis Center

Area size of 1000 ft x 1000 ft | minimum of 4

buildings per microgrid
=2 Not enough infrastructure to
> meet microgrid requirements

Results of Hurricane
Inundation Modeling for New
Orleans and surrounding
regions

Red = No critical infrastructure in area

= Critical infrastructure in area, but less
than required

Tool identified 15 microgrids, with additional areas
needing microgrids or backup generation

Green = Critical infrastructure, meets user-
defined requirement

= Applying grid and infrastructure modeling to determine grid investments that will
improve community resilience.

= Resilience metric: use microgrid designs to maximize the number of people with access
to key services during flooding scenarios. ' SOLAR ENERGY -
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Rural Microgrid Example: Borrego Springs, CA

10 hour outage to entire community
required to perform compliance-driven
transmission maintenance and to replace
2 suspect transmission poles

Utilized Borrego Springs Microgrid to
keep all 2800 customers energized during
transmission outage

Base load was fed by the solar facility,
using the batteries and distributed
generation to “follow the load”

Customers experienced a brief 10 minute
planned outage to reconnect to the
transmission grid y
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Rural Microgrid Example: Borrego Springs, CA
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Technology Challenges

e Continue PV and Wind Cost Reduction (<$0.50/W Utility Scale)
e Increase Overall Energy Use Efficiency

o Appliance Standards, LED conversion, ...
e Demand Management — just-in-time demand control

o Vehicle to Grid, Thermal Storage, Smart Homes, Smart Communities...

e Develop Firm Renewables
o CSP with FE/NE via sCO,, Biomass...
e Develop Flexible Base-load
o Natural gas with CCS
o Geothermal
e Strengthen Long Distance Transmission System
e Increase Grid and Generator Flexibility
e Peak Shift (4-8 hour) Storage (<$150/kWh, >85% efficiency)
e Seasonal Storage (2 to 4 months) (<$2/kWh, >40% efficiency)
o Power to gas
o Power to liquids

energy.gov/solar-office  Source: R. Swanson
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The market is changing — Our work is far from done

The PV market is moving from a past driven by
material cost reduction to a future driven by
efficiency improvement Trend: share of c-Si material types

Mono PERC from China is driving this transition -
faster than industry watchers recognize

Likely to see in 2018 and beyond low eff. Poly-BSF
product sold near marginal cost

IHS Markit data

Global average pricing (outside US and China)
currently in low 30c/Wp range

To stay competitive, we MUST step up our game
HS 2016 2016 2017 201¢ 2021 2024 2027
Ep-type mc mp-type HPmC B p-type monolike p-type monoe M n-fype mono
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Wide Bandgap Power Electronics Materials

Choices:
Silicon Carbide (SiC)
Gallium Nitride (GaN) Only feasible options before 2030
AIN (Aluminum Nitride)
Diamond
Issues:
. Defects in the material
B?nEf'tS: _ Lower voltage and current levels
High Operating Temperature | g5 experience & Lower reliability
High Current Density Higher Cost of material
High Blocking Voltage
Lower Specific Resistance Needed:
High Voltage & High Current (High
I — Power) & Relisble Devices g7 sunssre: il



Wide Bandgap Power Electronics Devices
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Power to Gas and Fuels

P2G (elec to synthetic methane & back to elec):

electric energy =2 electrolyzer (gives H, + O,)

- Sabatier reactor (4H, + CO, 2 CH, + 2H,0)

- back to electricity (and/or heat) via OCGT, CCGT, CHP
- chain efficiency ~ from 25% (OCGT) to 50% (CHP)

P2H, (elec to hydrogen & back to elec):

electric energy = electrolyzer (gives H, + O,)
- back to electricity (and/or heat) via Fuel cells (FC) — PEM or SOFC
- chain efficiency ~ from 30% (elec only and small) ... 70% (CHP)

Lousy efficiencies if valuable electricity as input; but interesting if cheap
electric energy is available in the market SOLAR ENERGY -
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National Laboratory Role

Basic science

The foundation of technology innovation requires resources,
depth, and specialized expertise that industry can’t maintain
alone

Radical and disruptive concepts
(high risk, high reward)
R&D beyond the limited time horizon of industry players

Independent validation to reduce perceived risk
Testing and evaluations
Well designed technical standards

R&D and Validation addressing system constraints to
adoption

Projects showing that perceived integration risks can be
addressed

SOLAR ENERGY -
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Policy and Regulatory Opportunities

e Wholesale market reform to allow:

o Expand ISO service territories as much as practical

o Proper valuation of flexible base-load generators

o Proper valuation for renewable curtailment

o Maintain utility capability to operate and maintain T&D
e Utility regulatory reform:

o Outcome versus cost of service

o Innovative business models

o Properly incentivize transmission investment

o Streamline transmission approval process
e Business Model Reform:

o Regulated utilities become platform providers

o Improve process for IOU to municipal utility conversion

SOLAR ENERGY -
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SETO’s role

Early-Stage Research Investments

* PV, CSP, and grid integration R&D with a history of commercial impact

* Pre-competitive R&D, typically 10-20 years from the market, is beyond the private-sector horizon

Mid-Stage Development Investments

* Topics include reliability and open-access performance data not addressed by the private sector

*  Public-private partnerships to support the next generation of innovative solar products

Energy System Planning
* In-depth technical studies and modeling solar’s impact on the national grid

* Unique facilities for RD&D at the national laboratories (e.g.the Energy Systems Integration Facility)

Regional/National Scope Technical Analysis
* National labs provide tools and trusted, impartial information
* Leadership in data standardization and best practices

Expanding Consumer Choice

* Efforts to streamline solar deployment taking root with co-ops and utilities

*  Programmatic efforts to expand household solar access to all Americans SOLAR ENERGY -
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SETO Team

i ' Y

Becca Jones-Albertus, Ph.D. Elaine Ulrich, Ph.D.
Deputy Director Special Projects
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Golden Field Office Staff

Diana

) Pamela
Bobo, £ Sara Wilson Brodie
Contracting Supervisor Contracting
Officer

Officer

Paige Smith Clay Pfrangle \ Fania Barwick Liz Parrish
Grants Specialist Grants Specialist N _\ z AN Grants Specialist/TPO  Grants Specialist
Eddie Campbell, Grants Specialist
_ SOLAR ENERGY
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SETO Operations Staff

Ebony Vauss,
Operations Supervisor

RS 2:'{, ‘
Meisha Baylor Jamal Ferguson Emily Marchetti
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SETO Communications Staff

Susanna Murley,
Communications Lead

Greg O’Brien "

Jen Bristol
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SETO Faces Not in Yesterday’s Slides

Michele Boyd Kemal Celik Tassos Golnas Jeremiah Miller Thomas Rueckert
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