Properties of DT ice in Cryotargets

Spherical target used to contain DT fuel

W. T. Shmayda
Laboratory for Laser Energetics
University of Rochester

37th Tritium Focus Group
Rochester, New York
25-26 October, 2016
The summary/overview

• The total error in measuring the composition of the hydrogen gas in cryotargets with a 77 K iron-doped alumina column is 2%. The random error in the measurement is 1.2%.

• The distribution of the H/D/T species making up the six isotopologues approaches equilibrium by the time H/D/T liquid is formed.

• The triple point, vapor pressure and ice density of DT ice can be extrapolated from the molecular composition of the D/T gas.
Step 1: Transfer DT from the uranium storage bed to the condensation tube and remove residual helium-3
Step 2: Transfer DT from the condensation tube (CT) to the Assay volume, assay the gas, take a sample and return to the CT.
Step 3: Drive DT through the Pd diffuser to the DTHPS Condensation Tube
Step 4: Drive DT through the Pd diffuser to the DTHPS Condensation Tube

![Diagram showing the flow of DT through various gloveboxes and containment systems.]
Step 5: Expand DT into the Syringe pump volume
Step 6: Compress the DT into the Permeation Cell in the Cryostat
Step 7: Cool the Permeation Cell to 50 K
Step 8: Return residual DT to the uranium storage bed
The hydrogen isotopologue fractions are measured by gas chromatography; H/D/T ratios are calculated from the area ratios.

The spectrum is used to calculate the H/D/T fractions.

The spectrum:
- 5.45% H
- 60.62% D
- 33.93% T

The peaks are labeled as follows:
- H₂
- HD
- D₂
- DT
- T₂

Diagram:
- Neon
- Vacuum
- Sample
- T₂ monitor
- TCD
- To effluent treatment
- Fe-doped alumina column at 77 K

TCD – Thermal conductivity detector

Error:
- Systematic† < 6%
- Relative (peak to peak) < 1.2%

† Based on cross comparison with measurements Lawrence Livermore National Lab.
The target-filling process enhances the lighter isotopic species

Composition in %: H/D/T

Estimated composition in italic
The cumulative error in calculating the tritium-to-deuterium ratio in the permeation cell is 1.2%.

The protium content increased at 1.9% per month since the fuel was isotopically purified.
The equilibrium D_2, DT, and T_2 distribution is fixed by the equilibrium constant (K_{DT}), and the T/D fuel ratio.

Initial Mixture

$[T_2] = x$
$[D_2] = 1 - x$

Final Mixture

$[T_2] = x - a$
$[D_2] = 1 - x - a$
$[DT] = 2a$

$[D_2] + [T_2] = \frac{K_{DT}}{2[DT]}$

$[DT] = [K_{DT}[T_2][D_2]]^{0.5}$

Theory overestimates or measurements underestimate the isotopic composition by $\sim 2\%$.
The protium (H) contribution to the isotopologue distribution is derived by including K_{HD}, K_{HT}, and the initial T/H ratio in the fuel.

\[[H_2] + [D_2] \overset{K_{HD}}{=} 2[HD] \]

\[[H_2] + [T_2] \overset{K_{HT}}{=} 2[HT] \]

\[[D_2] + [T_2] \overset{K_{DT}}{=} 2[DT] \]

\[[H_2] + [DT] \overset{K_4}{=} [HD] + [HT] \]

\[[D_2] + [HT] \overset{K_5}{=} [HD] + [DT] \]

\[[T_2] + [HD] \overset{K_6}{=} [DT] + [HT] \]

Theory underestimates or measurements overestimate the isotopic composition by $\sim 2\%$.
Raoult’s law connects the molar isotopic compositions in the vapor to the liquid and solid molar compositions.

\[
\begin{align*}
 x_{D_2} &= \left(y_{D_2} \frac{P_{D_2}}{P^o_{D_2}} \right) \\
 x_{T_2} &= \left(y_{T_2} \frac{P_{T_2}}{P^o_{T_2}} \right) \\
 x_{DT} &= \left(y_{DT} \frac{P_{DT}}{P^o_{DT}} \right)
\end{align*}
\]

- \(x\) = mole fraction in liquid
- \(y\) = mole fraction in vapor
- \(P^o\) = saturated vapor pressure
- \(P\) = partial pressure
Several ice properties can be predicted from the hydrogen isotopologue composition of the ice.

- **Triple point**
 - Includes D_2, DT, T_2 in the ice only

- **Vapor pressure over the ice/liquid**
 - $T/D \sim 1.0$

- **Density of the D/T ice mixture**
 - $T/D = 1.044$
 - $J = 0$ spin

- **Temperature (K)**
 - 16, 17, 18, 19, 20

- **Vapor Pressure (Torr)**
 - 10, 100, 1000, 10000

- **Tritium/Deuterium ratio**
 - 0.5, 1.0, 1.5

- **Triple Point (K)**
 - 19.4, 19.6, 19.8, 20
The triple point is a sensitive measure of the isotopic composition of the D/T ice.

- Need the temperature offsets for each cart
- Relative measurements for the same cart sidesteps offsets and provides a better comparison with theory.
The summary/overview

• The total error in measuring the composition of the hydrogen gas in cryotargets with a 77 K iron-doped alumina column is 2%. The random error in the measurement is 1.2%.

• The distribution of the H/D/T species making up the six isotopologues approaches equilibrium by the time H/D/T liquid is formed.

• The triple point, vapor pressure and ice density of DT ice can be extrapolated from the molecular composition of the D/T gas.