Evaluation of the Motor Carrier Management Information System Crash File, Phase One

Prepared for
Federal Motor Carrier Safety Administration
Office of Data Analysis and Information Systems

DTMC75-02-R-00090 Task D

Daniel Blower

Anne Matteson

March 2003

Center for National Truck Statistics
University of Michigan Transportation Research Institute
2901 Baxter Road
Ann Arbor Michigan 48109-2150

Report No.	Government Accession No.	Recipient's Catalog No.
UMTRI-2003-06		
Title and Subtitle	5. Report Date	
Evaluation of the Motor Carrier N	Management Information System	March 2003
Crash File, Phase One	-	Performing Organization Code
,		
7. Authors		Performing Organization Report No.
Daniel Blower, Anne Matteson		UMTRI-2003-06
Performing Organization Name and Address		10. Work Unit No.
Transportation Research Institute		
2901 Baxter Road		11. Contract or Grant No.
University of Michigan		DTMC75-02-R-00090
Ann Arbor, Michigan 48109-215	30	B 11110 / 5 02 10 000 / 0
12. Sponsoring Agency Name and Address		13. Type of Report and Period Covered
U.S. Department of Transportation	on	Special report
Federal Motor Carrier Safety Adr		
400 Seventh Street, SW	14. Sponsoring Agency Code	
1		
Washington, D.C. 20590		
45 Cumplementers Notes		

15. Supplementary Notes

16. Abstract

This document is the first in a series of papers presenting the results of an evaluation of the Motor Carrier Management Information System (MCMIS) Crash file undertaken by the Center for National Truck Statistics at the University of Michigan Transportation Research Institute. The MCMIS Crash file was developed by the Federal Motor Carrier Safety Administration (FMCSA) to allow for research on motor carrier safety problems, and to potentially provide a census of all trucks and buses involved in a traffic crash. The Crash file contains state-supplied data from police crash reports involving drivers and vehicles of all motor carriers operating in the U.S. It now includes a standard set of data elements that the states are required to supply on all trucks and buses involved in traffic crashes that meet a specific severity threshold.

The purpose of this evaluation is to understand the strengths and weaknesses of the MCMIS Crash file, to identify problems with the data, and to propose solutions. This first phase examines the overall level of reporting of MCMIS data by the states, and evaluates the extent of missing data.

Results from the 1994-2000 period show that about 42 of the 50 states and the District of Columbia are making efforts at full reporting of the required cases. However, for trucks the overall reporting level of fatal and nonfatal involvements is quite low at 63% of those expected, and for buses the rate is only 44% of expected. There has been continuous improvement in reporting trucks involved in fatal crashes, but less improvement for fatal bus involvements. There is a relative overreporting of injury crash involvements, but underreporting of towaway crashes. Missing data rates are reasonable for variables that provide simple descriptive information about the accident scene, but unacceptably high for details about the vehicle and driver.

17. Key Words		18. Distribution Statement	
MCMIS Crash file, SAFETYNET, trucks,		Unlimited	
buses, FARS, TIFA, BIFA, GES			
19. Security Classification (of this report)	20. Security Classific	cation (of this page)	21. No. of Pages
Unclassified	Unclassified		24

Table of Contents

Introduction	1
Objective of the project	
MCMIS Crash file	
Data files used in the evaluation	
Overall reporting to MCMIS Crash file	
Missing data	12
Summary and conclusions	16
Evaluations reported in future reports	17

Tables

Table 1 Cases Reported and Expected, MCMIS Crash File 1994-2000
Table 2 Cases Reported and Expected by Crash Severity, MCMIS Crash File 1994-2000 6
Table 3 States Reporting Levels by Year, 1994-2000
Table 4 Percent Unrecorded (Unknown) for Selected MCMIS Crash File Variables, 1994-2000
Table 5 Percent Unrecorded (Unknown) for MCMIS Crash File Hazmat Variables, where Hazmat Placard = "Y", 1994-2000
Figures
Figure 1 Percentage of Expected Cases Reported to MCMIS Crash File for Trucks, Buses and All
Figure 2 Percentage of Reported MCMIS Crash File Involvements by Crash Severity, 1994-2000
Figure 3 Percentage of Truck Crash Involvements Reported to MCMIS by Crash Severity, 1994-2000
Figure 4 Percentage of Bus Crash Involvements Reported to MCMIS by Crash Severity, 1994-2000

Evaluation of the Motor Carrier Management Information System Crash File, Phase One

Daniel Blower Anne Matteson

Center for National Truck Statistics University of Michigan Transportation Research Institute

Introduction

This is the first in a series of papers presenting the results of an evaluation of the Motor Carrier Management Information System (MCMIS) Crash file undertaken by the Center for National Truck Statistics at the University of Michigan Transportation Research Institute. In this paper we cover overall reporting levels to the MCMIS file; sources of underreporting by state and crash severity; and the problem of missing data. Later reports will evaluate data consistency, whether the correct cases are reported, and the accuracy of the reported data. The focus of the present report is at the national level, a "top-down" analysis. But the MCMIS Crash file is fundamentally a compilation of cases reported by individual states, so later reports will provide more of a state-by-state analysis. This process will identify states that are providing accurate and complete data, as well as states whose data are incomplete.

Objective of the project

The purpose of the work is to understand the strengths and weaknesses of the MCMIS Crash file, to identify problems with the data, and to propose solutions. The ultimate goal of the work is to assist in the continuing effort to improve the MCMIS file, validating it for use in crash analysis, and to support other objectives of the Federal Motor Carrier Safety Administration.

This project will evaluate the MCMIS Crash file in terms of completeness, accuracy, and consistency. Completeness has two components: 1) Are all the cases reported that should be? 2) Are the data complete for each record or is there substantial missing data? Consistency refers to the internal consistency of the data for each record. Are the data describing a crash consistent or are there contradictions? Judging consistency is difficult because, with only twenty-two reported data items, there are not many comparisons to be made among variables. Accuracy is measured against other sources, when possible. Accuracy is really a measure of the consistency of MCMIS data with those other sources. Whether the data in the MCMIS

Crash file is "accurate" when it conflicts with information from other sources is really a judgment of the relative quality of the two sources, based on knowledge of how the data are compiled, quality-control measures, and experience with the sources.

It is important to remember that the MCMIS file is a compilation of data files reported separately by the 50 states and the District of Columbia. While the data elements are specified and defined at the national level, each state develops its own method to collect and report the data. Therefore, data quality and completeness issues are state-level problems and must be addressed first at that level. The MCMIS Crash file aggregates data collected by the individual states. The strengths of the Crash file are a result of the potential to provide a national census of trucks and buses involved in traffic accidents. The Crash file's weaknesses are a result of the varying quality of the data uploaded from the states, including inconsistent, inaccurate, and missing data.

MCMIS Crash file

The Motor Carrier Management Information System (MCMIS) Crash file was developed by the Federal Motor Carrier Safety Administration (FMCSA), an agency of the U.S. Department of Transportation (DOT) responsible for monitoring and developing safety standards for commercial motor vehicles operating in interstate commerce. It was designed to replace the older MCS-50T data, which was not comprehensive enough to allow for research on motor carrier safety problems. A major virtue of the Crash file is that it contains records on all trucks and buses involved in a reportable crash, not just the reportable crashes of interstate carriers. A second advantage of the Crash file over the old MCS-50T data is that the data are not self-reported by carriers, but instead provided directly by the states. The combination of these two changes means that the MCMIS Crash file has the potential to provide a census of all trucks and buses involved in a traffic crash. The MCMIS Crash file thus is potentially a very valuable resource for FMCSA. Crash file data are used in the SAFER system to evaluate and compare the safety status of carriers. The Crash file also may serve as a census file of traffic crashes involving trucks and buses used for targeted research purposes.

The MCMIS Crash file contains data from state police crash reports involving drivers and vehicles of all motor carriers (interstate and intrastate) operating in the U.S. It now includes 22 data elements that the states are required to supply, along with several other data elements that are supplied by linking the state-supplied data to other files. The state-supplied data are based on a uniform set of crash data elements developed through the National Governors' Association (NGA). The data collected are entered by the states into a system called SAFETYNET, through which the data are transmitted to the FMCSA and entered into the MCMIS system.

Beginning January 1, 1994, states participating in the Motor Carrier Safety Assistance Program were required to report through the SAFETYNET system a standard set of data items on all trucks and buses involved in traffic crashes that met a specific severity threshold. Reporting requirements were designed to be simple and easily applied. Reportable crashes include one or more of the following vehicle types:

- A truck (used primarily for the transportation of property) having at least six tires in contact with the road surface
- A vehicle displaying a hazardous material placard
- A bus with seating for at least nine (15 before 2001) people, including the driver

The severity criteria for a reportable crash are equally straight-forward. Reportable crashes include one or more of the following factors:

- A fatality
- An injury requiring transport for immediate medical attention
- A vehicle towed from the scene as a result of disabling damage suffered in the crash

These straightforward definitions of trucks, buses, and reportable crashes facilitate uniform and comprehensive reporting by the states. Most states have implemented collection of the NGA data elements either by modifying their existing police accident reporting forms or by developing supplemental forms to be filled out for vehicles and crashes meeting the reporting criteria.

Data files used in the evaluation

To gauge levels of reporting to MCMIS, a comparison data set was developed from several applicable files. These files include the General Estimates System (GES) file and the Fatality Analysis Reporting System file, both compiled by the National Center for Statistics and Analysis in the National Highway Traffic Safety Administration (NHTSA); and the Trucks Involved in Fatal Accidents (TIFA) file and Buses Involved in Fatal Accidents (BIFA) file, both compiled by the University of Michigan Transportation Research Institute (UMTRI).

In each file, vehicles and crashes that would qualify for the MCMIS Crash file were selected. With respect to vehicles, all trucks and buses meeting the definitions used in the MCMIS Crash file were taken. For trucks, this includes trucks with at least two axles and six tires, or other vehicles placarded to carry hazardous materials. For buses, this involves buses with capacity for 15 or more passengers (prior to 2000) along with a driver, to the extent this could be determined in each data file used. Only crashes meeting the MCMIS crash severity

threshold were taken; i.e., crashes involving a fatality, an injury requiring transportation for immediate treatment, or a vehicle towed due to disabling damage.

The analysis file was constructed from several data sets. GES is known to underestimate fatal crash involvements, while it provides the best available estimates of nonfatal crashes. Accordingly, the GES file provided the data used to compare to nonfatal crashes in the MCMIS Crash file, while TIFA, BIFA, or FARS supplied the data to compare to fatal MCMIS crashes.

Overall reporting to MCMIS Crash file

Table 1 shows the overall number of cases reported to the MCMIS Crash file from 1994 to 2000, compared to the number of cases expected in each year. The frequencies in the "expected" column are based on the national estimates from the comparison file. Estimates from the comparison file are rounded to the nearest thousand to reflect the sampling error from the GES file.

Table 1 Cases Reported and Expected, MCMIS Crash File 1994-2000

_	Trucks		Bu	ses	То	Total		
Year	Reported	Expected	Reported	Expected	Reported	Expected		
1994	80,390	149,000	6,831	16,000	87,221	165,000		
1995	86,847	128,000	7,470	16,000	94,317	144,000		
1996	95,853	153,000	7,963	18,000	103,816	171,000		
1997	99,966	158,000	8,188	16,000	108,154	174,000		
1998	99,820	148,000	7,642	16,000	107,462	164,000		
1999	104,955	165,000	7,436	19,000	112,391	184,000		
2000 *	104,598	170,000	9,142	21,000	113,740	190,000		

^{*} FARS data were used in place of TIFA for the expected column in the 2000 data year.

Overall reporting increased from the inception of the file, but has leveled off in recent years, and leveled off significantly below full reporting for trucks, buses, or the total number of cases. In the year 2000, about 190,000 reportable truck or bus crash involvements were expected, but only about 114,000 involvements were reported to the MCMIS Crash file.

Figure 1 shows the percentages of expected cases reported to the MCMIS file for 1994 to 2000 for trucks, buses, and overall. The first thing to notice is that in none of the years was the reporting close to full. In the initial year of reporting, about 53% of reportable involvements were included in the file. The percentage reported rose to about 66% in the following year, but since then has stayed between 60% and 65%. There does not appear to be any improving trend in the comprehensiveness of reporting to the MCMIS Crash file since

1995, the second year for which the states were required to provide full reporting. The level of reporting has stayed consistently low.

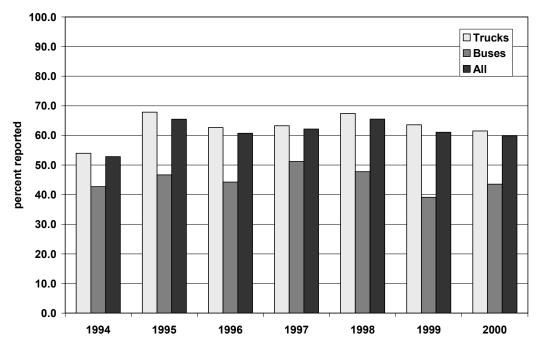


Figure 1 Percentage of Expected Cases Reported to MCMIS Crash File for Trucks, Buses, and All

Reporting of truck involvements is somewhat more complete than for buses. Again, only about 55% of expected truck cases were reported in the first year of reporting. The percentage increased to almost 68% in the second year, but never moved beyond that and in fact has only ranged between about 62% and 67% of expected cases. The results are even worse for reported bus crash involvements. Only 43% of expected bus involvements were reported in 1994. The percentage of expected bus involvements reported increased to about 51% in 1997 but then declined thereafter to less than 40% in 1999.

Overall, only about 44% of expected bus involvements are reported to the MCMIS Crash file. For trucks, the rate of reporting is somewhat better but still quite low at 63%. The combined reporting rate is 61%. Thus it appears that the MCMIS Crash file is still significantly below full reporting. Unfortunately it also appears that there is no trend toward fuller reporting. The reporting levels reached in the second year of the MCMIS file have stayed fairly constant since. Moreover, the level of reporting for bus crash involvements is significantly below that of truck involvements.

The completeness of crash involvement reporting varies by crash severity, and also differs for trucks and buses. Fatal and injury crash involvements tend to be reported more completely than towaway involvements. Truck crash involvements tend to be more

completely reported than bus involvements. In 2000, the number of reported MCMIS truck fatal involvements nearly equaled the number that actually occurred, according to the FARS file. Similarly, in 1997 and 1998, the number of truck involvements in crashes with an injury transported for immediate treatment was nearly equal to the expected number, though reporting trailed off in 1999 and 2000. However, in every year and for both trucks and buses, the reporting of towaway involvements to MCMIS is significantly lower than expected, in most years less than half. Bus reporting is more incomplete for every crash year and for every crash severity.

Table 2 Cases Reported and Expected by Crash Severity, MCMIS Crash File 1994-2000

	Fatal involvements								
	Tru	icks	Bu	ses	To	otal			
	Reported	Expected	Reported	Expected	Reported	Expected			
1994	2,810	4,801	82	266	2,892	5,067			
1995	3,030	4,640	97	294	3,127	4,934			
1996	3,368	5,001	139	350	3,507	5,351			
1997	3,623	5,136	146	314	3,769	5,450			
1998	3,963	5,202	137	308	4,100	5,510			
1999	4,585	5,233	183	333	4,768	5,566			
2000	4,923	5,298	232	357	5,155	5,655			
Total	26,302	35,311	1,016	2,222	27,318	37,533			

	Injury involvements							
	Tru	icks	Bu	ses	Total			
	Reported	Expected	Reported	Expected	Reported	Expected		
1994	42,000	57,000	4,000	10,000	46,000	66,000		
1995	46,000	52,000	5,000	8,000	51,000	60,000		
1996	53,000	59,000	6,000	10,000	59,000	69,000		
1997	55,000	57,000	6,000	6,000	61,000	64,000		
1998	53,000	52,000	5,000	8,000	58,000	60,000		
1999	51,000	66,000	5,000	10,000	56,000	76,000		
2000	49,000	62,000	6,000	10,000	54,000	72,000		
Total	348,000	406,000	36,000	62,000	384,000	467,000		

	Towaway involvements							
	Tru	icks	Bu	ses	To	Total		
	Reported	Expected	Reported	Expected	Reported	Expected		
1994	35,000	88,000	3,000	6,000	38,000	94,000		
1995	38,000	70,000	3,000	8,000	40,000	79,000		
1996	40,000	88,000	2,000	8,000	42,000	96,000		
1997	41,000	95,000	2,000	9,000	44,000	105,000		
1998	43,000	91,000	2,000	7,000	45,000	99,000		
1999	49,000	94,000	3,000	9,000	52,000	103,000		
2000	51,000	102,000	3,000	11,000	54,000	112,000		
Total	298,000	629,000	18,000	59,000	315,000	687,000		

Note: Reported and expected injury and towaway involvements rounded to nearest thousand.

Table 2 shows the reported and expected cases in the MCMIS Crash file separately for fatal, injury, and towaway involvements, and for trucks and buses. Fatal and injury crash

involvements tend to be reported more completely than towaway involvements, and truck crash involvements tend to be more completely reported than bus involvements. In 2000, the number of reported MCMIS truck fatal involvements nearly equaled the number that actually occurred, according to the FARS file. Similarly, in 1997 and 1998, the number of truck involvements in crashes with an injury transported for immediate treatment was nearly equal to the expected number, though reporting trailed off in 1999 and 2000. However, in every year and for both trucks and buses, the reporting of towaway involvements to MCMIS is significantly lower than expected, in most years less than half. Bus reporting is more incomplete for every crash year and for every crash severity.

Figure 2 displays the overall level of reporting to MCMIS by crash severity. Surprisingly, for the first five years (1994-1998) of required reporting, a higher percentage of injury crash involvements than fatal involvements was reported. One might expect that fatal involvements would be more likely to be reported, given their seriousness. But for each year from 1994 to 1998, a higher percentage of injury involvements was reported. However, the figure shows that the proportion of reported fatal involvements has increased each year, as would be expected, and that in the most recent full year of reporting, over 90% of fatal crash involvements, including both truck and bus, were reported. This trend of increasing compliance with reporting requirements is both expected and welcome. However, reporting completeness for injury crash involvements has actually decreased substantially in the last two years. And it should also be noted that towaway reporting started low and has not increased much. While the improvement of the reporting of fatal involvements is gratifying, a census file of fatal crash involvements is already available in the FARS, TIFA, and BIFA files. It is exactly the injury and towaway crashes that require a census file, which the MCMIS Crash file has failed to produce to date.

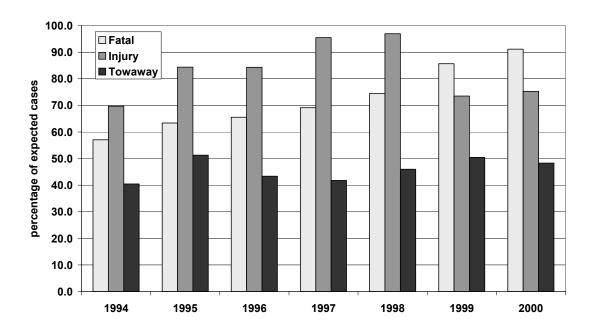


Figure 2 Percentage of Reported MCMIS Crash File Involvements by Crash Severity, 1994-2000

Reporting levels for crash involvements of trucks are very similar to the overall level of reporting, because truck involvements are about 93% of all involvements reported to MCMIS. Nevertheless, it is useful to break out truck involvements separately. Figure 3 shows that the reporting of truck fatal involvements has improved in each of the years of MCMIS. In the 2000 crash year, almost 93% of truck involvements in fatal crashes were reported. On the other hand, while the proportion of injury crash involvements reported improved steadily until in 1998, when 103% of the expected number of involvements were reported, the proportion dropped below 80% in both 1999 and 2000. Towaway reporting fluctuated at a low level, breaking 50% in 1995, 1999, and 2000, but averaging under 48%.

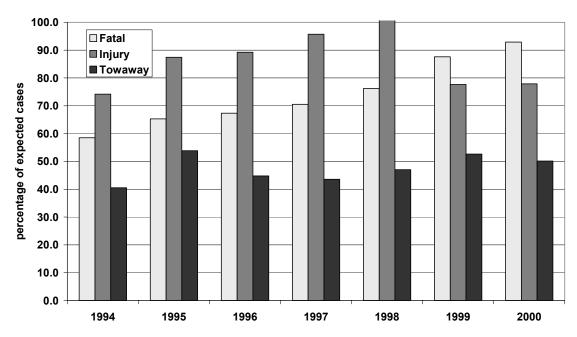


Figure 3 Percentage of Truck Crash Involvements Reported to MCMIS by Crash Severity, 1994-2000

The reporting of bus crash involvements was low for all crash severities, and more erratic than for trucks (Figure 4). The proportion of buses involved in fatal crashes shows a trend of improvement, but as late as 2000, only about 65% of bus fatal involvements were reported. The proportion of injury involvements varies widely, ranging from 43% in 1994 to 93% in 1997, but unfortunately, there does not appear to be a trend to the level of reporting, either of improvement or of deterioration. Buses appear to be somewhat overlooked in reporting by many states to the MCMIS Crash file. Reporting of towaway bus crash involvements fluctuates around 30%, with no indication of any long-term improvement.

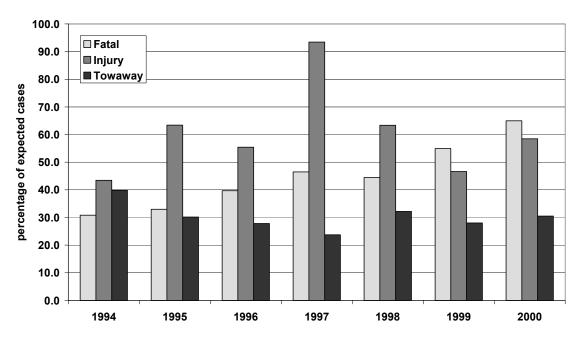


Figure 4 Percentage of Bus Crash Involvements Reported to MCMIS by Crash Severity, 1994-2000

Table A-1 in the appendix shows the level of reporting by state of trucks involved in fatal crashes in 1998, 1999, and 2000. Crash files containing all fatal crashes already exist in the TIFA and FARS files. These files can be used directly to compare the completeness of reporting to the MCMIS Crash file for each state. The most recent three years of reporting are shown because they are the most pertinent.

Over the three years from 1998 to 2000, most states improved the level of their reporting. Overall, underreporting of truck fatal involvements was reduced from 1,239 in 1998 to 375 out of the 5,298 fatal truck involvements reported in FARS for the year 2000. Over the three-year period, thirteen states and the District of Columbia underreported their truck fatal involvements by an average of 20% or more, including Alaska, Arizona, California, Florida, Maine, Mississippi, Nevada, New Jersey, New Mexico, North Carolina, Ohio, Oklahoma, Texas, and Virginia. Texas alone accounted for about one-third of the underreporting in 2000, failing to report 137 truck involvements, up from 71 missed in 1998 and 70 missed in 1999. Several of these states improved the accuracy of their reported totals over the period, including California, Florida, New Mexico, Oklahoma, and Ohio. On the other hand, many states' reporting was reasonably complete, at least with respect to the <u>number</u> of truck fatal crash involvements. Twenty-eight states averaged underreporting of less than 10% annually over the period, although Tennessee is included on the list because it underreported by 40% and 23% in 1998 and 1999 respectively, and then made up for that by overreporting by 35% in 2000.

Table A-2 in the appendix shows the level of reporting of bus fatal crash involvements for each of the states and the District of Columbia. The underreporting of buses involved in fatal crashes is much more extensive than for trucks. Over the three years represented in the table, almost half of fatal bus involvements were not reported. Thirty-three of the states and the District of Columbia misreported the number of fatal bus involvements by more than 20% each year on average. In contrast, Alabama, Delaware, Hawaii, Idaho, Nebraska, New Hampshire, North Dakota, Pennsylvania, South Dakota, and Vermont all reported within 5% of the correct number. It should be noted, however, that Vermont and South Dakota had no fatal bus crashes in the three years and Nebraska, New Hampshire, and North Dakota each had only one.

Judgments about reporting levels for nonfatal crashes are more subjective, since there is no file to compare to MCMIS data on a state-by-state basis. However, by examining the level of reporting from year to year for each state, it is possible to get some sense of the direction the state is going. Table 3 tabulates judgments on the level of states' reporting efforts. These judgments were made by looking at total MCMIS case counts for each state by month and year from 1994-2001. The following definitions were used in determining each state's placement:

- Not reporting: The state reported no cases for that year.
- Nominal reporting: Annual case counts were less than 5% of the average number for other years.
- Partial reporting: Case counts were definitely below those for other years. In some cases, all months showed lower counts, and in other instances only a couple of months were responsible for the difference.
- Efforts at full reporting: Reporting looks fairly consistent with other years and monthly counts are stable. There could be some variation observed, but not enough to suggest that partial reporting is occurring.

As the reader will observe, all states have made some effort at reporting in each of the past five years. Moreover, the number of states just partially reporting has steadily decreased, so that in the 2000 data year, only nine states were judged to be only partially reporting. While some of the other trends reviewed thus far have been discouraging, at least insofar as participation in the MCMIS process is concerned, it appears that more states are participating.

¹ In a later phase of the project, however, we will compare reporting of nonfatal crashes for states for which we have the complete crash files.

	•		,	
'				Efforts at
	Not	Nominal	Partial	full
Year	reporting	reporting	reporting	reporting
1994	1	2	26	22
1995	0	1	26	24
1996	0	0	21	30
1997	0	0	18	33
1998	0	0	14	37
1999	0	0	7	44
2000	0	0	9	42

Table 3 States Reporting Levels by Year, 1994-2000

Missing data

Table 4 shows missing data rates for the most important variables in the MCMIS Crash file. The fact of missing data does not necessarily indicate a problem in every instance. For example, between 32% and 45% of the cases are missing a DOT number, but a DOT number is only issued to companies that operate trucks in interstate commerce or that carry hazardous materials (hazmat). Missing DOT numbers may simply indicate an intrastate carrier. Likewise, the lack of a crash city name could indicate that the crash took place outside of city limits.

In general, most of the baseline variables have reasonably low rates of missing data. Cargo body type, vehicle configuration, whether the vehicle was a truck or bus, number of fatalities, number of injuries, and number of vehicles in the crash all have very low rates of missing data. Data are complete for both number of fatalities and number of injuries, and only a few cases have obvious miscodes for those variables. Six cases are coded with more than 70 fatalities, including one with 970; and four cases are coded with more than 100 injuries, including one with 260 injuries, another with 630 injuries, and one with 998 injuries! But considering the roughly 727,000 cases reported over the time period, a handful of cases is insignificant. Other variables that are descriptive of the crash also have reasonably low rates. Driver license state, light condition, weather, road surface condition, and road access control all have rates of missing data under 10% in most years.

Table 4 Percent Unrecorded (Unknown) for Selected MCMIS Crash File Variables, 1994-2000

				Year			
MCMIS variable	1994	1995	1996	1997	1998	1999	2000
Apparent driver condition	21.2	20.4	15.9	15.0	15.9	22.1	43.4
Axles	14.9	11.5	10.5	10.3	13.2	22.1	36.3
Cargo body type	0.0	0.0	0.3	0.1	0.1	0.6	2.1
Carrier address/state	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Carrier name source	30.7	36.3	33.2	32.1	34.6	38.3	56.0
Census number (DOT number)	45.0	45.3	37.9	36.2	33.6	32.9	34.5
Census state	97.3	95.4	79.8	39.7	38.9	40.2	45.1
Citation issued	99.0	99.6	97.9	97.1	96.7	93.8	69.6

				Year			
MCMIS variable	1994	1995	1996	1997	1998	1999	2000
Configuration	0.0	0.0	0.0	0.0	0.0	0.2	1.1
Crash city/name	46.3	21.2	22.7	19.6	22.8	25.8	30.3
Crash date	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Crash state	0.8	0.0	0.0	0.0	0.0	0.0	0.0
Crash time – hour	0.1	0.2	0.2	0.2	0.2	0.2	0.3
Crash time – minutes	0.1	0.2	0.2	0.2	0.2	0.2	0.3
Driver's license class	100.0	100.0	100.0	100.0	100.0	99.6	95.5
Driver's license state	9.3	9.5	7.4	6.6	7.1	5.9	4.7
Driver's license valid	99.0	99.6	97.9	97.1	96.7	93.8	70.8
Driver's date of birth	9.7	8.6	6.5	5.7	6.3	6.2	6.0
GVW	22.3	20.3	20.3	19.0	21.3	24.5	40.0
GVWR	22.2	20.3	19.8	18.5	20.6	20.9	17.7
Hazardous materials placarded	47.8	49.0	51.0	48.8	52.4	44.7	28.3
Hazardous materials release of cargo	96.7	97.0	94.9	94.4	94.0	88.4	64.7
Interstate	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Light condition	8.4	6.5	6.0	5.8	8.7	9.3	12.3
Number of fatalities	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Number of injuries	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Number of vehicles	5.6	3.7	2.9	2.8	3.0	4.3	2.3
Report state	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Road access control	0.1	0.0	0.7	0.4	0.4	2.7	22.2
Road surface condition	8.9	6.8	5.9	6.0	9.0	8.9	11.9
Road trafficway	22.7	21.4	14.6	15.3	21.1	26.1	23.8
Sequence of events, first	9.8	8.1	7.5	8.0	9.9	14.4	13.3
State issuing state census number	61.9	65.0	70.6	72.0	77.4	78.0	76.0
Towaway	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Truck/bus	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Vehicle identification number	19.2	20.6	19.3	27.7	29.0	31.8	23.5
Vehicle license state	11.7	12.0	12.1	9.7	9.5	11.2	12.7
Vehicles in crash	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Weather condition	8.7	6.9	6.0	5.8	6.1	8.7	12.2

Missing data rates are quite high for many other variables; so high that they limit the usefulness of the file. For example, other than driver license state, most of the variables on driver condition, citation, and license status are missing. Both driver license class and whether the driver's license was valid are almost entirely missing data. There is valid data on driver condition in 80% to 85% of the cases up to 1999, but the missing data rate increased to 43% in 2000. Driver citation (whether the driver received a citation) is also generally missing. It is possible that most of the missing data on the driver citation variable is because the driver was not cited for any violation and the reporting officer did not bother to check the "no" box. Nevertheless, the variable is "Y" or "N" and it would be relatively easy to implement a computerized check to record the variable correctly based on whether a citation number had been recorded.

The vehicle identification number (VIN) is also missing in about 20% of the cases. This is particularly unfortunate because VINs contain a wealth of information about the truck, including make, model, model year, gross vehicle weight rating, number of axles (of the power unit), and cab style.

Gross vehicle weight, gross vehicle weight rating, and the hazardous materials-related variables also have high rates of missing data. Gross vehicle weight and gross vehicle weight rating both are difficult to code and require some specialized knowledge on the part of the police officer. The gross vehicle weight rating of a truck is generally stamped on a plate fixed to the frame of the door or some other location, but without specialized training, a reporting officer may not be able to locate or interpret the codes. Gross vehicle weight is the actual weight of the truck at the time of the crash. Truck drivers and operators that either haul goods for hire or often operate close to gross weight limits often know this, since moving goods is how they make their living and the purpose for which they use the truck. Operators of trucks in other applications may not know and, unless the reporting police officer can locate a weigh station receipt or some other documentation, determining the weight is not generally feasible.

In addition to the gross vehicle weight missing from almost a quarter of the cases, the data coded is unreasonable or unlikely in a significant fraction of the cases. Over nine percent of the cases are assigned a gross weight over 80,000 pounds, while only around 3% of tractor-semitrailers involved in fatal crashes have gross weights that high. Almost 2% of the MCMIS crash cases are coded with gross weights over 150,000 pounds, which is extremely unlikely. It is more likely that such great weights are miscodes.

While coding weight variables may be inherently difficult, high rates of missing data on hazmat variables are less understandable. Hazmat placards are designed to be visible and are a well-known warning sign. As in the case of driver citations, the gross missing data rate is misleading, since it is likely that the police officer just left the question blank if a truck did not have a placard.

There are five variables that record the presence and type of hazmat cargo. To determine missing data rates, we used the "hazmat placard" to identify MCMIS vehicles carrying hazardous cargo. The hazmat placard variable, of course, is subject to missing data and inaccuracies, like all other variables. There were 406 cases over the period from 1994 to 2000 where the hazmat placard variable was either blank or "no," but there was valid data in the other variables on hazmat. These 406 cases amount to 1.4% of the 28,195 vehicles recorded with a hazmat placard, which, under the circumstances, is a reasonably low error rate. In any case, it is necessary to use one variable against which to measure missing data, and the hazmat placard variable appears to be the most appropriate.

Table 5 shows the percentages of cases with missing data on the hazmat detail variables, where the vehicle was coded as displaying a hazmat placard (hazmat placard="Y"). Missing data on all the variables is quite high. For the hazmat class, missing data averages around one-third of the cases. The more detailed identification of the material, the four-digit hazmat ID number, is missing in about 22% to 79% of the cases; there was no information about hazmat cargo spill in 13% to 73% of the cases; and the material's name was not recorded in 16% to 65% of the cases.

Table 5 Percent Unrecorded (Unknown) for MCMIS Crash File Hazmat Variables, where Hazmat Placard = "Y", 1994-2000

				Year			
MCMIS hazmat variable	1994	1995	1996	1997	1998	1999	2000
Hazmat class	37.8	30.3	25.2	25.5	38.3	81.3	36.4
Hazmat 4-digit ID number	28.2	26.8	27.4	22.3	47.5	79.0	27.4
Hazmat cargo spill	16.2	13.5	13.1	18.3	39.5	72.8	18.6
Hazmat name	61.7	58.9	60.9	65.1	42.3	15.6	50.1

Though missing data rates on the hazmat variables are generally quite high, they vary considerably from year to year. In fact, 1999 stands out both for high and low rates of missing data. In 1999, rates were unusually high for hazmat class, hazmat four-digit ID number, and hazmat cargo spill. But the rate of missing data on hazmat name was unusually low. What accounts for these anomalies? In a word, California. It appears that there was some problem with the data uploaded by California in 1999. The number of cases reported with a hazmat placard jumped by several thousand, and most of the new cases came from California. Examining the hazmat name variable provides a clue to the error. As Table 5 shows, missing data for hazmat name was unusually low in 1999. Most of the difference is explained by over 6,200 California cases in which the hazmat name was reported as "N". This indicates that data from California for the hazmat variables was probably reported in the wrong fields, resulting in a large number of cases incorrectly coded with hazmat placard="Y". Probably the "N" reported in the hazmat name field should have been recorded in the hazmat placard field, though this is just speculation, as we do not have information on the details of how fields are reported from California to the MCMIS file.

Nevertheless, even discounting California cases in 1999, rates of missing data on hazmat variables are very high, and severely limit the utility of these variables for analysis. In roughly one-third of cases, it is not possible to identify the type of hazmat involved in a crash, even in general terms. Moreover, the missing data rate for the hazmat four-digit ID number does not account for the additional 5.0% of cases with invalid ID numbers, so that, leaving out the anomalous year of 1999, only about 62% of hazmat placarded vehicles have valid information on the type of hazardous materials carried.

Summary and conclusions

Reporting to the MCMIS Crash file has stabilized at a relatively low level. There has been continuous improvement in the reporting of trucks involved in fatal crashes, but less improvement for fatal bus involvements. Recent years have seen about 90% of truck involvements in fatal crashes reported, though only about 65% of bus involvements. The upward trend, particularly for trucks, is welcome, but tempered by the fact that useful census files for fatal crashes already exist. Involvements in injury crashes is reported at a higher rate than for fatal crashes, but the relative overreporting of injuries could be due to failing to apply the injury severity threshold correctly. The injury reporting criterion is any injury transported for medical treatment. The relative overreporting of injury crash involvements could be due to reporting all injury crash involvements, rather than just those with injuries transported for treatment. The "transported for treatment" criterion may be too difficult to apply in practice. The relative underreporting of towaway crashes could just be a neglect of this non-serious accident type. More consistent reporting may be achieved by a simpler reporting threshold.

Buses are generally underreported, both overall and in comparison with trucks, at all severity thresholds. Most of the emphasis in crash reporting has been on trucks; so a heightened emphasis on buses may be necessary to improve reporting levels. The recent change in the definition of a reportable bus to eight passengers plus a driver will probably make reporting more difficult, because the definition of a bus in terms of passengers overlaps family vans, which may result in confusion.

It appears that an increasing proportion of states are reporting to the MCMIS crash file, but, seven years after inception, only 42 of the 50 states and the District of Columbia are apparently making efforts at full reporting. The number of states has been increasing, but still much progress remains to be made.

Missing data rates are reasonable for variables that provide simple descriptive information about the accident scene, but unacceptably high for details about the vehicle and driver. Most driver licensing and citation information is unavailable. The vehicle identification number, key to important physical details about the vehicle, is missing in about 20% of cases. Gross weight is missing or unreasonable in about 35% of cases. Considering variables on hazardous materials, it appears that the hazmat placard variable is generally reliable in identifying hazardous materials cargoes, but the variables that provide details about the cargo are missing between 20% and 38% of the time. Simple computer checks could flag cases with unreasonable or missing information at the state level. In fact, such checks are the only practical way to improve reporting.

Evaluations reported in future reports

In the next report, we will focus on the results of matching MCMIS Crash file cases with individual cases in other crash files, primarily UMTRI's Trucks Involved in Fatal Accidents (TIFA) and Buses Involved in Fatal Accidents (BIFA) files. Both the TIFA and BIFA files are census files (all cases) of the respective vehicle type's involvement in fatal traffic accidents.

The tables in the Appendix show reporting levels in terms of the gross number of cases reported, but not whether the correct cases were reported. Since the TIFA and BIFA files include all trucks and buses, respectively, involved in a fatal crash, the MCMIS Crash file should include, in theory, each case reported in TIFA and BIFA. The next paper will report on an effort to locate each individual TIFA and BIFA case in the MCMIS Crash file. The results will identify cases correctly reported in MCMIS, cases not found in MCMIS, and cases reported in MCMIS that do not appear in either the TIFA or the BIFA files. In addition, the matching process will allow us to evaluate the accuracy of MCMIS file variables, by comparing data on the case in the MCMIS file with comparable information in the TIFA and BIFA files. Patterns of underreporting and inaccurate reporting will be identified and suggestions will be made for improving reporting to the MCMIS Crash file.

The evaluation described above is limited to fatal crashes, because only vehicles involved in fatal crashes are included in TIFA/BIFA. Subsequent evaluations will match MCMIS Crash file cases with selected state crash files. UMTRI has a library of several state crash files that can be used to match with cases in MCMIS. Once again, differences between the content of the state files and the corresponding record in the MCMIS Crash file will suggest quality-control measures that can improve the consistency and accuracy of the file.

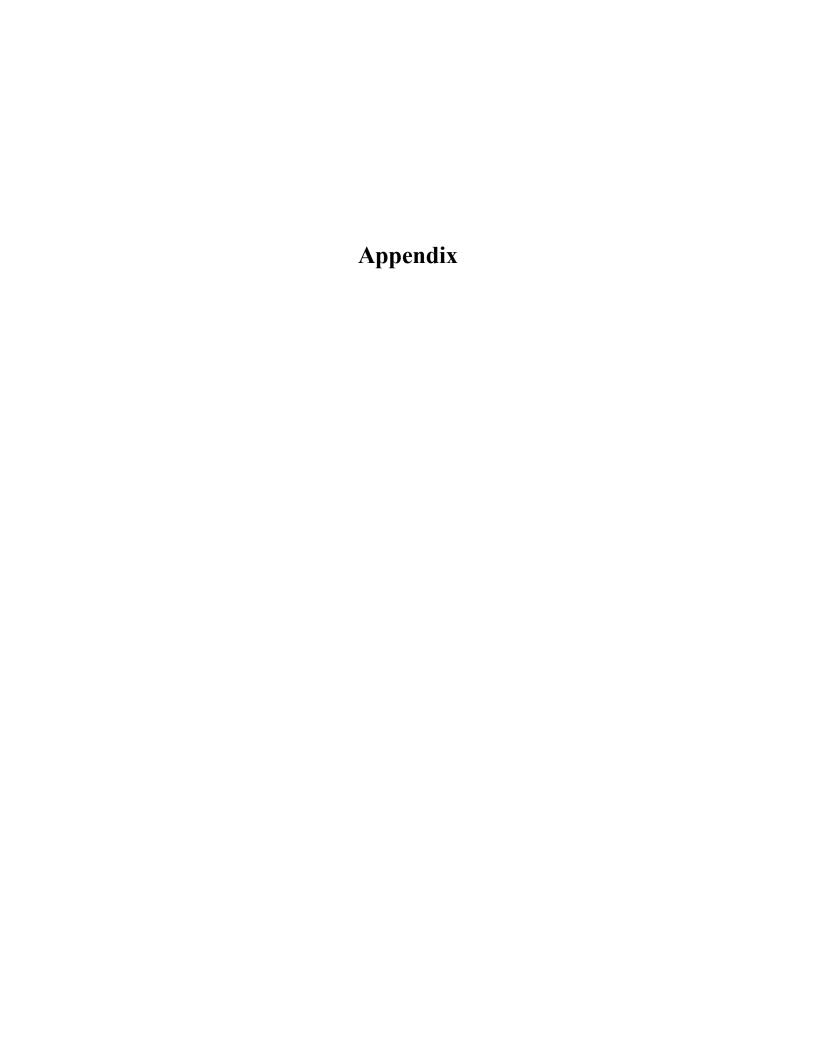


Table A-1 Fatal MCMIS Truck Involvements by State Compared with TIFA and FARS, 1998-2000

	1998			1999			2000		
State	MCMIS	TIFA	Under/ over	MCMIS	TIFA	Under/	MCMIS	FARS	Under/
Alabama	156	150	6	147	146	over 1	162	154	over 8
Alaska	0	2	-2	1	7	-6	6	4	2
Arizona	44	100	-56	87	117	-30	97	107	-10
Arkansas	109	100	2	86	98	-30 -12	110	119	-10 -9
California	151	376	-225	228	347	-119	407	397	10
Colorado	43	55	-223	65	65	0	66	75	-9
Connecticut	33	30	3	23	24	-1	36	39	-3
Delaware	19	23	<u>-4</u>	11	10	1	21	21	0
Dist. of Col.	1	23	- 	1	2	-1	2	4	-2
Florida	209	330	-121	257	344	-87	260	321	-61
Georgia	157	203	-121 -46	200	233	-33	223	219	4
Hawaii	3	203 4	-40 -1	4	3	-33 1	3	219	1
Idaho	26	23	3	27	26	1	27	27	0
Illinois	155	187	-32	190	204	-14	162	171	-9
Indiana	126	182	-56	193	195	-14 -2	162	171	-9 -9
Iowa	80	84	-36 -4	102	193	0	84	87	-9 -3
Kansas	74	82	-4 -8	77	80	-3	82	85	-3 -3
Kansas Kentucky	94	103	-8 -9	97	104	-3 -7	97	99	-3 -2
Louisiana	106	149	-43	111	104	-13	144	118	26
Maine	12	22	-43 -10	24	27	-13 -3	13	27	-14
Maryland	69	73	-10 -4	45	65	-20	78	67	-14 11
Massachusetts	35	40	-4 -5	36	37	-20 -1	55	49	6
Michigan	140	155	-15	142	144	-1 -2	141	152	-11
Minnesota	96	84	12	91	90	-2 1	83	132 79	-11 4
Mississippi	67	113	-46	95	118	-23	117	124	-7
Missouri	154	166	-40 -12	173	169	-23 4	175	180	-7 -5
Montana	16	19	-12	15	15	0	26	27	-3 -1
Nebraska	44	44	0	59	62	-3	55	55	0
Nevada	9	36	-27	37	44	-3 -7	30	39	-9
N. Hampshire	10	11	-27 -1	11	11	0	9	11	-2
New Jersey	55	68	-13	50	61	-11	57	95	-38
New Mexico	8	50	-42	44	52	-8	44	44	0
New York	145	138	7	166	156	10	162	162	0
North Carolina	192	244	-52	144	204	-60	134	179	-45
North Dakota	8	8	0	20	204	0	12	11	1
Ohio	80	201	-121	150	214	-64	161	200	-39
Oklahoma	61	114	-53	83	97	-14	102	117	-15
Oregon	68	70	-33 -2	58	50	8	62	65	-3
Pennsylvania	161	185	-24	188	217	-29	149	190	-41
Rhode Island	2	4	-24	9	9	0	3	2	1
South Carolina	134	131	3	140	144	-4	121	99	22
South Caronna South Dakota	14	14	0	21	19	2	20	22	-2
Tennessee	83	137	-54	134	173	-39	233	173	60
Texas	391	462	-71	364	434	-70	366	503	-137
Utah	55	51	4	46	39	7	42	44	-137
Vermont	9	10	-1	9	8	1	8	8	0
Virginia	68	121	-53	89	108	-19	73	107	-34
Washington	46	72	-33 -26	66	60	6	66	69	-34 -3
West Virginia	24	42	-20 -18	56	51	5	46	51	-5 -5
Wisconsin	92	93	-18 -1	84	77	<i>3</i> 7	110	107	3
Wyoming	29	32	-3	29	27	2	19	20	-1
Total	3963	5202	-1239	4585	5233	-648	4923	5298	-375

Table A-2 Fatal MCMIS Bus Involvements by State Compared with TIFA and FARS, 1998-2000

	1998			1999			2000		
			Under/			Under/			Under/
State	MCMIS	FARS	over	MCMIS	BIFA	over	MCMIS	FARS	over
Alabama	6	7	-1	2	2	0	3	3	0
Alaska	0	1	-1	0	0	0	0	3	-3
Arizona	0	4	-4	0	6	-6	2	7	-5
Arkansas	1	3	-2	0	3	-3	0	2	-2
California	7	38	-31	17	45	-28	33	38	-5
Colorado	4	9	-5	5	5	0	5	7	-2
Connecticut	2	3	-1	3	4	-1	2	2	0
Delaware	1	1	0	3	3	0	1	1	0
Dist of Col.	1	1	0	2	2	0	1	3	-2
Florida	9	23	-14	14	26	-12	11	38	-27
Georgia	0	14	-14	2	8	-6	6	13	-7
Hawaii	3	3	0	1	1	0	4	4	0
Idaho	0	0	0	2	2	0	0	0	0
Illinois	3	14	-11	0	12	-12	1	13	-12
Indiana	2	4	-2	3	6	-3	3	4	-1
Iowa	1	2	-1	1	1	0	1	5	-4
Kansas	1	1	0	2	4	-2	4	5	-1
Kentucky	3	6	-3	0	1	-1	2	3	-1
Louisiana	0	4	-4	5	4	1	1	2	-1
Maine	0	1	-1	0	1	-1	0	0	0
Maryland	0	9	-9	0	8	-8	0	5	-5
Massachusetts	2	3	-1	0	2	-2	2	3	-1
Michigan	2	8	-6	3	9	-6	0	17	-17
Minnesota	3	5	-2	2	5	-3	6	9	-3
Mississippi	0	1	-1	2	2	0	2	2	0
Missouri	3	3	0	5	7	-2	5	8	-3
Montana	1	2	-1	1	1	0	0	0	0
Nebraska	1	1	0	1	0	1	1	0	1
Nevada	0	4	-4	4	4	0	2	6	-4
N. Hampshire	0	0	0	0	0	0	1	1	0
New Jersey	8	14	-6	3	17	-14	4	13	-9
New Mexico	1	3	-2	1	5	-4	2	5	-3
New York	23	29	-6	32	36	-4	28	33	-5
North Carolina	3	5	-2	1	4	-3	0	7	-7
North Dakota	0	0	0	0	0	0	1	1	0
Ohio	0	11	-11	4	12	-8	30	9	21
Oklahoma	1	1	0	1	3	-2	5	8	-3
Oregon	0	2	-2	0	6	-6	0	0	0
Pennsylvania	13	13	0	22	23	-1	16	17	-1
Rhode Island	1	1	0	0	1	-1	0	2	-2
South Carolina	0	3	-3	0	6	-6	1	2	-1
South Dakota	0	0	0	0	0	0	0	0	0
Tennessee	1	8	-7	2	2	0	2	7	-5
Texas	19	22	-3	17	18	-1	29	28	1
Utah	2	2	0	3	3	0	2	3	-1
Vermont	0	0	0	0	0	0	0	0	0
Virginia	1	5	-4	3	7	-4	1	3	-2
Washington	0	4	-4	7	10	-3	3	4	-1
West Virginia	0	2	-2	2	2	0	1	1	0
Wisconsin	8	8	0	5	4	1	6	7	-1
Wyoming	0	0	0	0	0	0	2	3	-1
Total	137	308	-171	183	333	-150	232	357	-125