Novel Lighting Strategies for Optimizing Circadian Health and Alertness in Shiftworkers

Gena Glickman, PhD
Center for Circadian Biology, University of California San Diego
Shiftwork

- 15 million individuals work outside regular 9-5 shift (U.S. Department of Labor)
- Increased risk of accident & injury (Folkard & Tucker, 2003)
- Myriad physiological & psychological consequences (Evans et al. 2013; Brown et al., 2009; Lawson et al., 2011)
- Compromised alertness, performance and health costs ~$200 billion annually (Kerin & Aguirre, 2005)
- Limited practical solutions
What causes the harm?

Three interconnected processes interact in the shiftworker:

• Circadian misalignment

• Sleep deprivation

• Light at night
Circadian Rhythms and Disturbances

NORMAL

- **Plasma Melatonin (pg/ml)**
- **Core body temperature (°C)**
- **Plasma cortisol (μg/100 ml)**

SLEEP

WAKE
Circadian Rhythms and Shift Work
Policy Resource and Education Paper (PREP), 2010

• “the single most important reason given for premature attrition from the field”

• Lack of guidance:
 “Shifts should be scheduled, whenever possible, in a manner consistent with circadian principles. For most settings, scheduling isolated night shifts or relatively long sequences of night shifts is recommended.”
Lighting Countermeasures for Shiftworkers

- Facilitate circadian adjustment
- Increase alertness/performance on-shift
- Increase sleep duration/quality
Elements Mediating the Effects of Light

• Timing

• Wavelength
Phase Response Curve

Subjective Day

Subjective Night

Advance

Phase Shift (h)

Delay

Circadian Time (h)

Phase advance

Phase delay
Spectral Sensitivity

\[\lambda_{\text{max}} = 464 \text{ nm} \]

\[R^2 = 0.91 \]
Responses to “Blue-Attenuated” Light

- Van der Werken et al., 2014
Proposed Intervention for Night Shiftworkers

Combines two evidence-based lighting interventions to address two different light responses:

- **Circadian Phase Resetting, architectural**
 - maximize input during subjective day
 - minimize input close to desired bedtime

- **Acute Alerting, individual**
 - light for alerting ONLY
 - only when KSS ≥6 and/or increased reaction time on PVT (need based*)
Study Light Sources

<table>
<thead>
<tr>
<th>Light Source</th>
<th>CCT (K)</th>
<th>Melanopic lux (m-lux)</th>
<th>Photopic lux (lux)</th>
<th>m-lux/lux</th>
<th>CRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA sky at 2 PM</td>
<td>5107</td>
<td>1.12e+3</td>
<td>662</td>
<td>1.69</td>
<td>100</td>
</tr>
<tr>
<td>3500K fluorescent</td>
<td>3562</td>
<td>50.4</td>
<td>100</td>
<td>0.504</td>
<td>75.2</td>
</tr>
<tr>
<td>Blue-enriched</td>
<td>3483</td>
<td>93</td>
<td>100</td>
<td>0.931</td>
<td>84.26</td>
</tr>
<tr>
<td>Alert ONLY</td>
<td>TBD</td>
<td>~30</td>
<td>100</td>
<td>~0.30</td>
<td>>80</td>
</tr>
</tbody>
</table>
Shiftworker Intervention Protocol (N=30)

Baseline assessment (2 weeks)

Night shiftworker “day”

Night shiftworker “night”

KSS/PVT

Randomized, cross-over design

Blue-enriched (2 weeks)

Blue-enriched + Alert ONLY (2 weeks)
Measures

- Sleep and work diaries
- Continuous actigraphy
- Hormone profiles (melatonin and cortisol)
- Karolinska Sleepiness Scale (KSS)
- Psychomotor vigilance test (PVT)
- Subjective measures of health, quality of life, turnover communication
Conclusions

• Biological effects of light may be influenced via a variety of variables (timing, intensity, wavelength, photoperiod history)

• However, not all light responses are necessarily influenced in the same way

• Those disassociations may be utilized in the development of optimal treatment strategies

• Further, individualized and dynamic lighting environments have the potential to be particularly effective in populations with significant variability in circadian phase, such as shiftworkers
Our Team

UCSD
Liz Harrison
Emily Schmied
Michael Gorman

BIOS
Robert Soler
Sean Wegart

flux
Michael Herf
Lorna Herf

Department of Energy
Brian Dotson
Robert Davis
Morgan Pattison