Energy Design and Scoping Tool for DC Distribution Systems

NREL, LBNL, Colorado State University, Robert Bosch LLC, PVI Construction Management
Stephen Frank, PhD, Senior Systems Engineer (NREL)
303-275-4249 / Stephen.Frank@nrel.gov
DC Design and Scoping Tool

It’s a Direct Current World Out There

DC distribution systems can save both energy and money...

...but how much?

To answer that question, industry needs rigorous and accurate analysis tools

Existing Studies
- Inconsistent assumptions
- Lo-fi models
- Dubious claims
- Conflicting results
DC Design and Scoping Tool

Customer Need:
Quantify the Benefit of DC Distribution
- How much energy can I save?
- What will it cost me?
- What is the net financial benefit?

DC Design Tools Provides:
Fair and Accurate Cost/Benefit Analysis
- Cost Breakdown
- Energy Savings
- Design Insight

Experiments & Field Studies
Rich Data & Rigorous Validation

Electrical Network Models
- Modelica

Whole-Building Energy Modeling
- EnergyPlus

- Cost Analysis
- Integration
- User Interface

Inform & Verify

DC Design Tool
DC Design and Scoping Tool

The DC Energy Design and Scoping Tool will...

- Fully capture effects of converter losses and device part-load ratios
- Ensure accuracy via thorough experimental validation
- Leverage whole-building energy modeling tools to calculate HVAC impacts
- Provide a fair comparison between AC and DC design alternatives

DC Technical Potential Savings in 2030

U.S. buildings primary energy (electricity): 40 Quadrillion BTU
Electricity delivered through power electronics: 80%
Estimated savings per converter: 3%

\[40 \times 0.8 \times 0.03 = 0.96 \text{ Quads} \] ($19 \text{ Billion}) per year

Oregon
0.96 Quads
Thank You

National Renewable Energy Laboratory
Lawrence Berkeley National Laboratory
Colorado State University
Robert Bosch LLC
PVI Construction Management

Stephen Frank, PhD
Senior Systems Engineer (NREL)
303-275-4249 / Stephen.Frank@nrel.gov