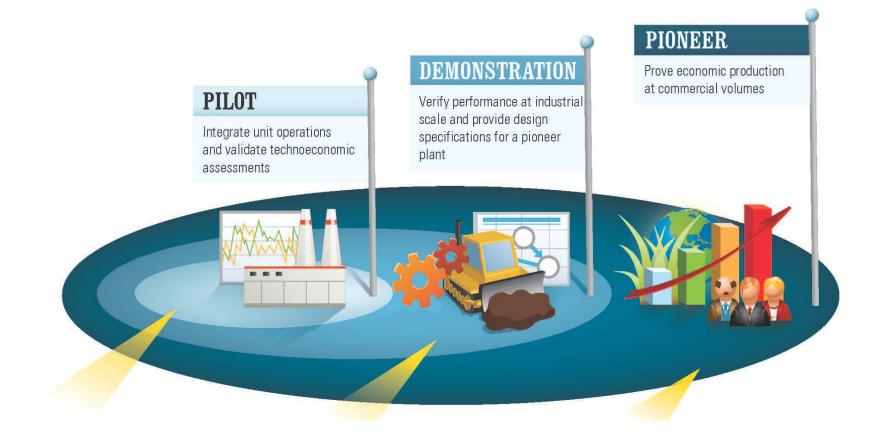
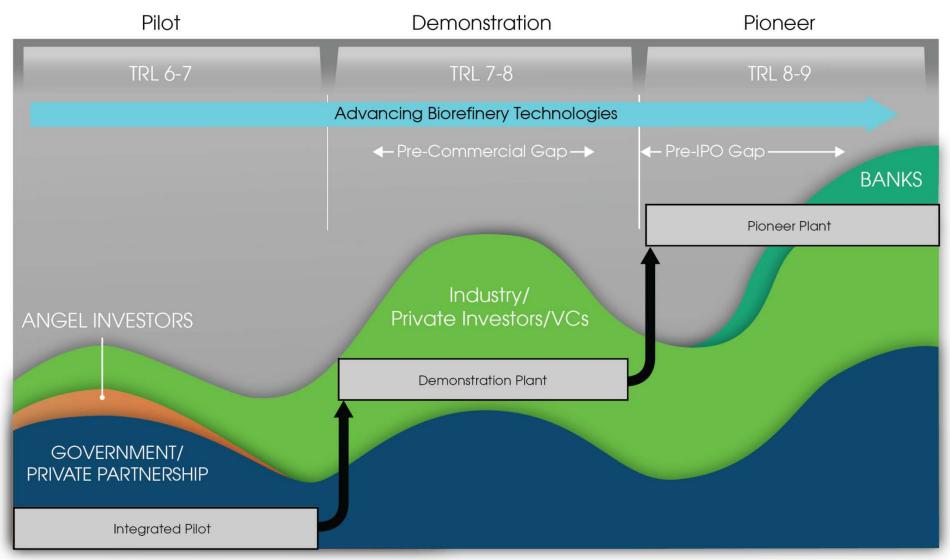
BIOENERGY TECHNOLOGIES OFFICE

Energy Efficiency & Renewable Energy

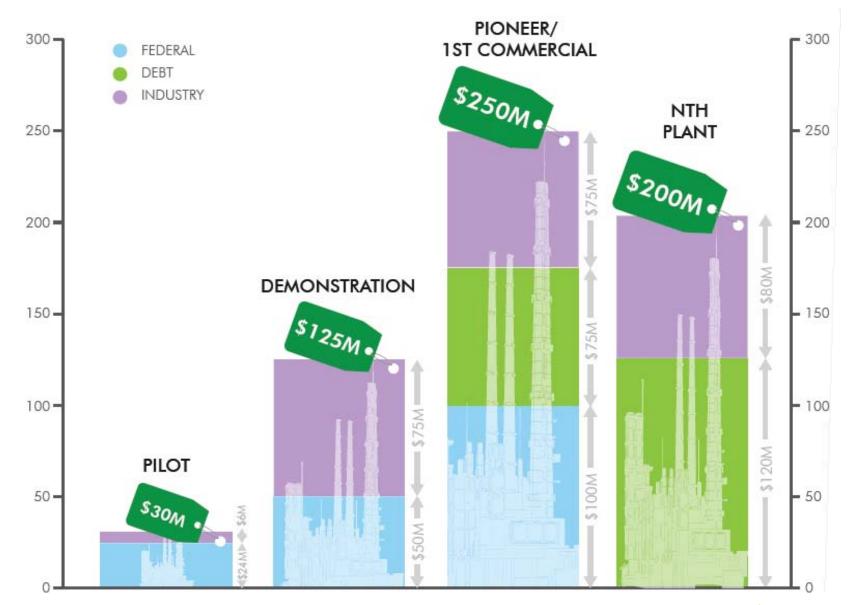

ADO Workshop January 12, 2017 Jim Spaeth Program Manager Advanced Development & Optimization

Outline

- I. History of D&D to DMT to ADO
- II. Past Investments
- III. Introduction to ADO
- IV. Leverage DOE and private investments
- v. Questions



Enabling Commercialization Through Successive Scaling


Valley of Death

4 | Bioenergy Technologies Office

IBR Project Funding Profile – Investment Required

5 | Bioenergy Technologies Office

Technical Challenges

Challenges:

Feedstock Collection, Harvesting & Storage

Feedstock Preprocessing

Pretreatment

Conversion Yields

Bio/Chemical Catalyst Selectivity & Fouling

Process Integration

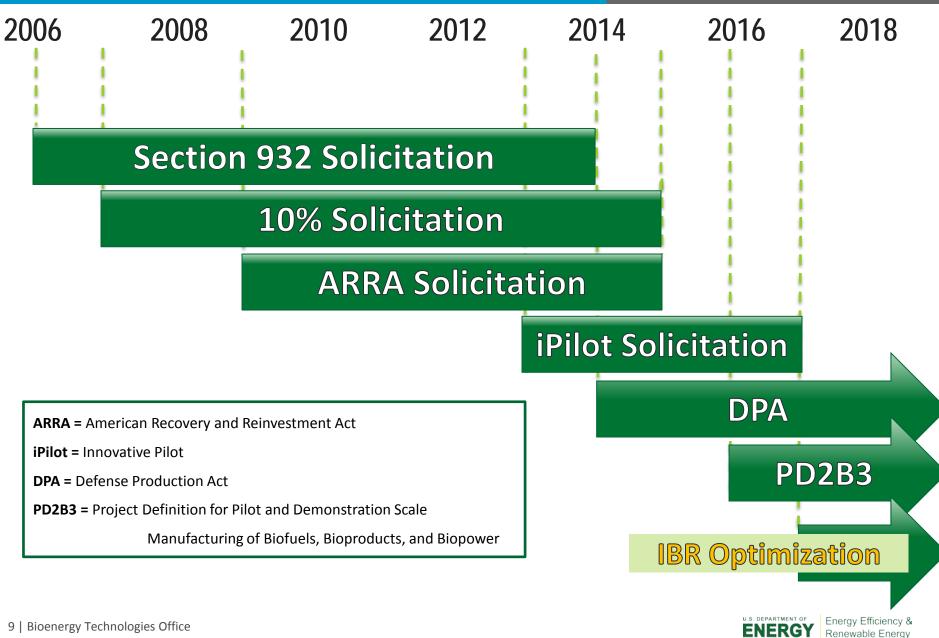
Continuous Throughput

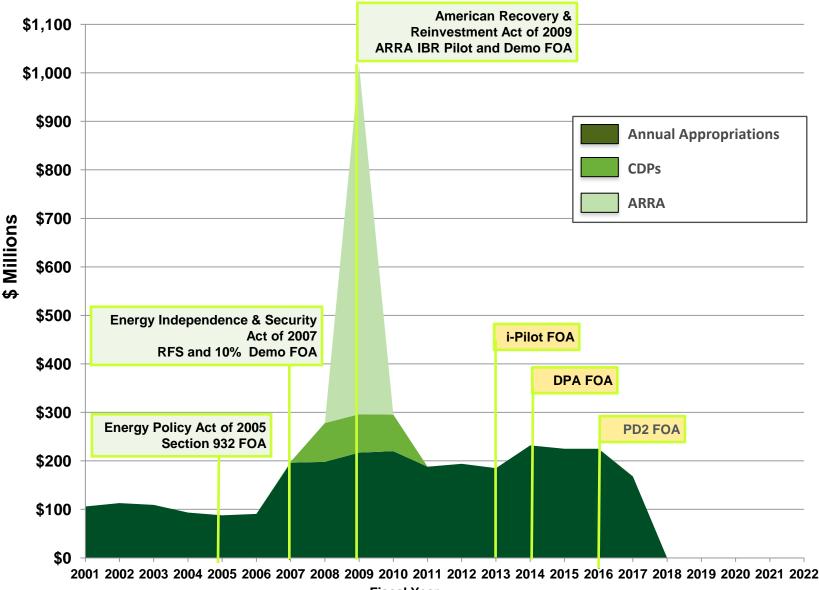
6 | 6

Valley of Death for New Technologies: Some IPA Key Findings

- Commercializing some level of new technology 40% of projects fail
- New technology projects 80% don't meet performance expectations
- Incorrect assessment of the level of difficulty posed by underlying process
 - Leads to overoptimistic expectations on project and process performance
 - Average cost growth = 30%
 - Average schedule growth = 65%
 - Average production shortfalls over 50% in second 6 months of operation
 - Average startup durations 50% longer than industry average
- Shortcomings often don't surface until startup and operation
 - Only remedy is costly de-bottlenecking and corrective engineering
- Core lesson:
 - Must understand and accept higher levels of project and process risk

Non-Technical Barriers to Commercial Success


- Business/Contracts
 - Feedstock Supply
 - Offtake Agreements
 - EPC
- Feedstock Infrastructure
- Biofuels Distribution
- Codes & Standards, Quality
- Public perception and acceptance of Biofuels
- Environmental concerns
- Finance Strategic Investors
- Policy



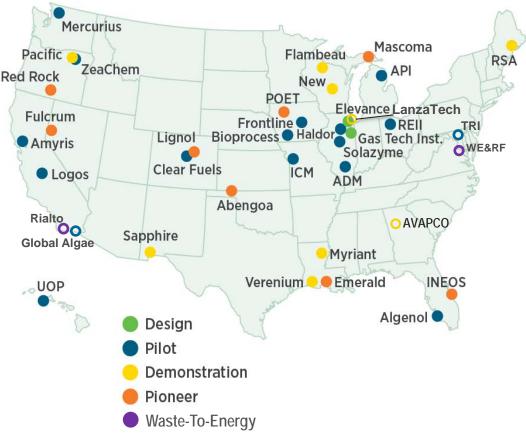
IBR Program FOA History

Major Legislative Drivers, BETO Funding, and IBR FOAs

BETO - IBR Program History

- Demonstration & Deployment 2009 2013
- Demonstration & Market 2014 2017
 Transformation
- Advanced Development & Optimization

2017 >


Distribution of IBR Projects since 2006

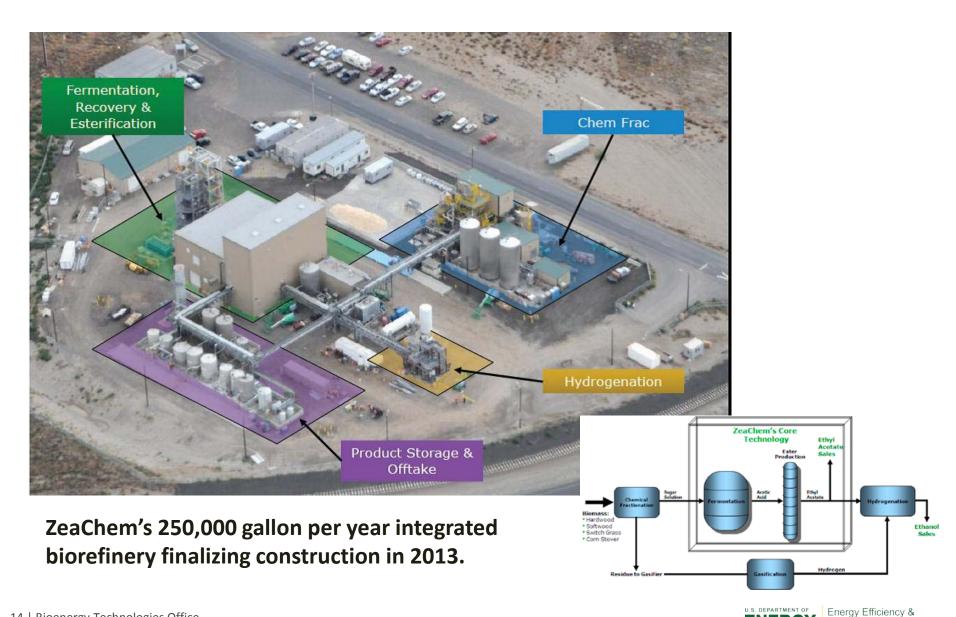
Since 2006, a total of 42 pilot, demonstration and pioneer-scale facilities

 Recently selected six new projects under the PD2B3 FOA

BETO investments have allowed industry partners to:

- Enable the development of first-of-a-kind IBRs
- Prove conversion technologies at scale
- Validate techno-economic assessments, and
- Gain investor confidence

Open circle designates a recent PD2B3 FOA selection


American Process Inc. – Pilot Plant

ZeaChem – Pilot Plant

ENERGY Renewable Energy

Logos/EdiniQ - Pilot

Clear Fuels – Rentech – Pilot Plant

Honeywell UOP – Pilot Plant

Red Shield Acquisition

Olde Town Fuel & Fiber, Maine

Myriant's Bio-Succinic Acid Plant – Demonstration Plant

INEOS New Planet Biorefinery – Demonstration Plant

Abengoa Bioenergy – Pioneer Commercial Plant

POET Project Liberty – Pioneer Commercial Plant

Aerial view of POET-DSM's Project Liberty cellulosic ethanol plant in Emmetsburg, Iowa

DuPont Cellulosic Ethanol Facility

Nevada, Iowa

DOE investment supported development work with NREL ۲

Pioneer Commercial Scale Facilities

Domestic Facilities:

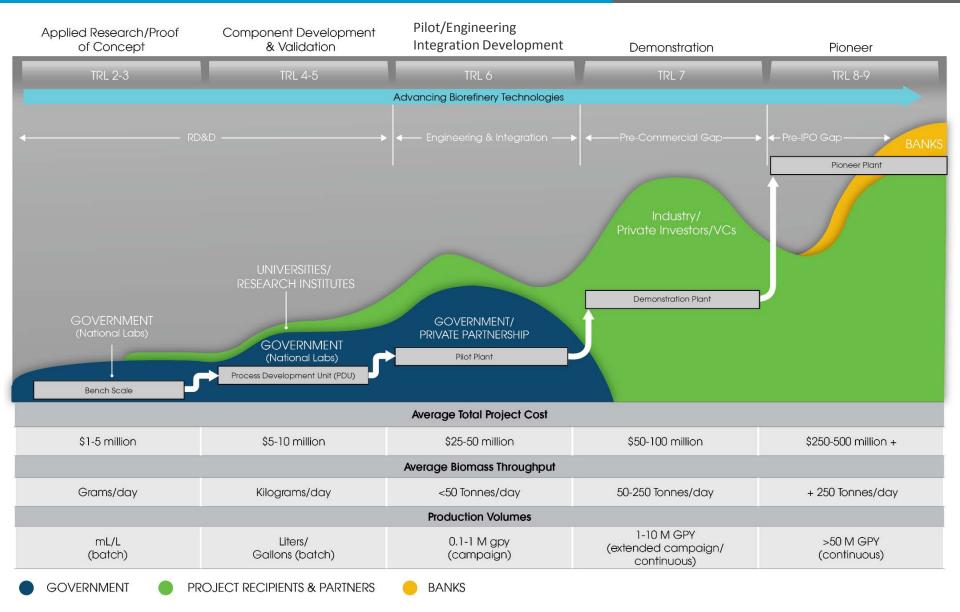
- POET Emmetsburg IA
 - 1000 tons/day, 25 MGPY
- ABENGOA Hugoton KS
 - 930 tons/day, 25 MGPY
- DuPont Nevada IA
 - 1000 tons/day, 30 MGPY

International Facilities:

- BETA Renewables
 - 770 tons/day feedstock throughput
- GranBio
 - 22 MGPY Ethanol production
- Raizen (logen technology)
 - 300 tons/day, ~10 MGPY

PD2B3 FOA Selections

In December 2016, DOE announced up to **\$12.9 million** for six projects ullet


Demonstration-Scale Integrated Biorefineries	AVAPCO, LLC
AVAPCO LanzaTech	LanzaTech, Inc.
Pilot-Scale Integrated Biorefineries	Global Algae Innovations
GLOBAL ALGAE INNOVATIONS	ThermoChem Recovery International, Inc.
Pilot-Scale Waste-to-Energy Projects	Rialto Bioenergy, LLC
	Water Environment & Reuse Foundation

Advanced Development & Optimization

Multi-Step Pathway to Commercialization

The Future of ADO

• Key Focus Elements

- Engineering scale types of work
- Unit operations development as opposed to integrated pilot

- TRLs 4 - 6

OMB R&D Definitions

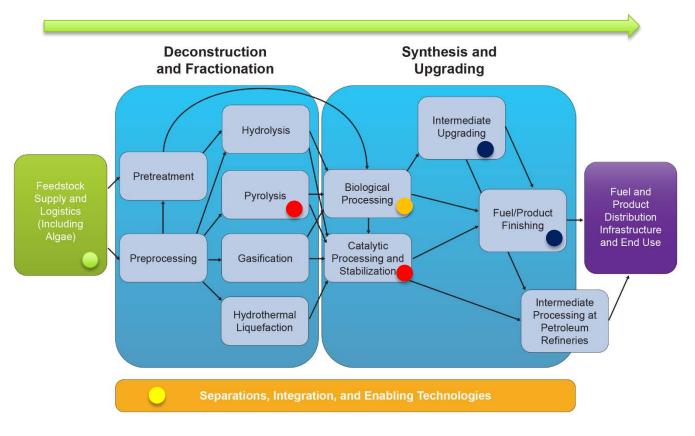
Term	Definition
Basic research	Experimental or theoretical work undertaken primarily to acquire new knowledge. May include activities with broad or general applications. Exclude research directed towards a specific application or requirement.
Applied research	Original investigation undertaken in order to acquire new knowledge. Directed primarily towards a specific practical aim or objective.
•	 Creative and systematic work, drawing on knowledge gained from research and practical experience, which is directed at producing new products or processes or improving existing products or processes. Like research, will result in gaining additional knowledge. Include: The production of materials, devices, and systems or methods, including the design, construction and testing of experimental prototypes. Technology demonstrations, where a system or component is being demonstrated at scale for the first time, and it is realistic to expect additional refinements to the
	 design (feedback R&D) following the demonstration. Not all activities that are identified as "technology demonstrations" are R&D. Exclude: User demonstrations where cost and benefits are being validated for a specific use. Pre-production development, which is defined as non-experimental work on a product or system before it goes into full production, including activities such as tooling and development of production facilities.

DOE Technology Readiness Assessment (DOE G 413.3)

- TRL indicates the maturity level of a given technology
- TRL is **not an indication** of the quality of technology implementation in the design

Tech Development Level	TRL	Definition
Systems Operations	9	Actual system operated over full range of expected mission conditions
System Commissioning	8	Actual system completed and qualified through test and demonstration
	7	Full-scale, similar system demonstrated in relevant environment
Technology Demonstration	6	Engineering / pilot scale, similar system validation in relevant environment
Technology Development	5	Laboratory scale, similar system validation in relevant environment.
	4	Component and/or system validation in laboratory environment.
Research to Prove Feasibility Basic Technology Research	3	Analytical and experimental critical function and/or characteristic proof of concept
	2	Technology concept and/or application formulated
	1	Basic principles observed and reported

DOE introduced scale when defining TRL's 5-7



Indicators of Readiness

- Technology Readiness Level (TRL) measures the maturity of a technology (typically a process unit operation)
 - TRL does not measure robustness of technology integration into a system (connectivity)
 - Higher TRL does not indicate that a unit operation will successfully integrate into an overall process
- Integration Readiness Level (IRL) addresses unit to unit connections
- Systems Readiness Level (SRL) calculates integrated system maturity / readiness
- Manufacturing Readiness Levels (MRL) indicates development of a manufacturing base
- Understanding relationships between and within unit operations is critical to inform R&D gaps and future technology development

Conversion Pathways from Feedstocks to Products

Examples of Lab capabilities include:

- Feedstock Supply & Logistics (INL)
- Pyrolysis + Catalytic Processing and Stabilization (NREL)
- Intermediate Upgrading +Fuel/Product Finishing (PNNL)
- **Biochemical Fermentation (NREL)**
- **Electrolytic Separation**

Lab Scale – Example NREL Photos

BETO Laboratories:

No single fully integrated process – integration is virtual

Biomass Feedstock PDU (INL)

Advanced Biofuels PDU (LBNL)

Integrated Biorefinery PDU (NREL)

Biofuels and Bioproducts Process Pilot Verification Capabilities RFI Responses

- Facilities reporting the capability to perform conversions on a scale of approximately 0.5 or greater tons of dry biomass input per day
 - 13 biochemical facilities
 - 10 employing sugars fermentation and 3 employing anaerobic digestion
 - 14 thermochemical facilities
 - 7 employing pyrolysis (1 integrated, 6 non-integrated) and 7 employing gasification (4 integrated, 3 non-integrated)
 - Several others employing other pathways or in design phase
 - Tables of non-confidential data, describing the unit operations of each facility
 - <u>https://energy.gov/eere/bioenergy/downloads/biofuels-and-bioproducts-process-</u> <u>pilot-verification-capabilities-rfi</u>
 - It can be accessed from the <u>Conversion page</u>
- Also see <u>Responses to DE-FOA-0001615: Request for Information: Cellulosic Sugar and</u> <u>Lignin Production Capabilities</u> (Go to bioenergy.energy.gov → Bioenergy → Research & Development → Conversion Technologies → Results of Cellulosic Sugar and Lignin Production Capabilities Request for Information)

The Future of ADO

- Key Focus Elements
 - Engineering scale types of work
 - Unit operations development as opposed to integrated pilot
 - TRLs 4 6
 - Extend development of BETO R&D and Consortia work
 - Feedstock-Conversion Interface Consortium
 - Agile Biofoundry, Chem Cat Bio, CCPC
 - Advanced Biofuels/Drop-Ins
 - Aviation and Marine
 - Products
 - Maximize use of existing National Laboratory and Private facilities

The future is ...

ENERGY Energy Efficiency & Renewable Energy

In our hands

Questions

Jim Spaeth

Program Manager Advanced Development & Optimization U.S. DOE Bioenergy Technologies Office (BETO) <u>Jim.Spaeth@ee.doe.gov</u>

