Life-Cycle Assessment of Cellulosic Biofuel Production with Ionic Liquid Pretreatment

Binod Neupane, N.V.S.N. Murthy Konda, Seema Singh, Blake A. Simmons, and Corinne D. Scown
Joint BioEnergy Institute, US Department of Energy

BioEconomy 2017
Arlington, VA
11-12 July, 2017
Overview

• Advanced biofuels research @ JBEI

• Ionic liquid (IL) pretreatment

• IL Process Configurations / Variations
 – Past, Present, and Future
 – Biocompatible ILs, Protic/Neutral ILs

• LCA results
 – Greenhouse gas emissions & Water intensity

• Conclusions
Lignocellulosic Biofuels:
Fuels derived from the solar energy stored in plants/biomass

Efficient, economical and scalable technologies at each stage are necessary

Focus is on drop-in biofuels
Ionic Liquid (IL) Pretreatment

• **What are ILs?**
 – Essentially, salts in liquid phase at room temperature

• **Why ILs?**
 – Effective in reducing biomass recalcitrance
 – Facilitates efficient hydrolysis
 – Numerous options (cations / anions) → Tunable properties
 – Feedstock agnostic
 – Facilitate operation at milder conditions (low Temp etc.)
 – Lignin valorization possibilities

• **@ JBEI**
 – IL pretreatment technologies are being developed
 – With a focus on efficient, economical & scalable technologies
Process configurations (variations)

Water-wash route (traditional)

- Biomass
- IL

 Pretreatment → Hydrolysis → Fermentation → Biofuel

 IL recovery

Integrated processes (novel approach)

- Biomass
- IL

 Pretreatment → Hydrolysis → Fermentation → Biofuel

 IL recovery
Integrated High Gravity Process (iHG-Current)

Biomass

10 wt % [Ch][Lys] + 90 wt% H₂O

Pretreatment

Enzyme

HCl

Hydrolysis

Seed Batch

Operating Batch (Fed-batch)

Fermentation

S/L separation (Centrifugation)

IL recycle

IL regeneration

No dilution & Fed-batch operation

Sols (to boiler)

Ultrafiltration

Solids (to boiler)

Product recovery

Water (to WWT)

Distillation

Biofuel

Protic IL (PIL) process (iHG-Projected)

Biomass → Pretreat → Pre-Hydrolysis (2 MPa) → SSF (2 MPa) → S/L separation (Centrifugation)

Enzyme

Aq. [Ch][Lys] → Enzyme → IL_{recycle}

Solids (to boiler)

Ultrafiltration

Water (to WWT)

Product Recovery

Distillation

Ethanol

GHG footprint: [Ch][Lys] Production

- Lysine Production (China)
- Lysine Production (US)

Contributors:
- Corn Farming
- Petroleum Products
- Electricity
- Transportation
- Facility Direct Emissions
- Chemicals and Fertilizers
- Other
GHG footprint: Biofuel Production

Gasoline Baseline = 93 g CO$_2$e/MJ
Water intensity: Biofuel Production

Contributors:
- Petroleum Products
- Upstream Electricity
- Electricity Credits
- Chemicals and Fertilizers
- Facility Direct Consumption/Withdrawal

Gasoline Baseline
Sensitivity Analysis

- Yield (± 10%)
- Electricity (±0.2 kWh)
- IL recovery (±10%)
- Enzyme (±10%)
- H2SO4 vs. HCl for pH
- Potential NaOH required

Net Change in Greenhouse Gas Emissions (g CO₂e/MJ)

Net Change in Water Consumption (Liters/MJ)
Concluding remarks

• Ionic liquid (IL) pretreatment facilitates efficient hydrolysis

• Life-cycle assessment has been performed (for the first-time)

• GHG emissions:
 – Water-wash (traditional) route is water/energy intensive → high GHG footprint
 – iHG processes have the potential to reduce GHG footprint significantly

• Water intensity (both consumption & withdrawal) can be comparable to other pretreatment technologies

• Sensitivity analysis highlights the potential impact of key yet uncertain parameters
Thank You!

- Corinne Scown
- Blake Simmons
- Jay Keasling
- Seema Singh
- Binod Neupane
- Jian Sun
- Tanmoy Dutta
- Florent Bouxin
- Anthe George
- Gabriella Papa
- JBEI researchers

MurthyKonda@lbl.gov
The role of biocompatible ILs (BILs)

• BILs eliminate the need for water-wash and/or other separation operations prior to hydrolysis/fermentation
 – Reduced water-usage and therefore lower costs (by eliminating or minimizing the need for subsequent IL dehydration)
 – Elimination of glucan/xylan losses in water-washing step

• Possibility to be used in aqueous form (e.g., 10% IL, w/w)
 – Reduced usage of IL
 – Enables higher solids loading
 – No further dilution required prior to hydrolysis and fermentation
Protic ILs (PILs)

- No pH adjustment during hydrolysis/fermentation
 - No mineral acids are used
 - No Need for IL regeneration
 - Improved recovery efficiency and reduced recovery costs

Sun J., Konda N.V.S.N.M. et al., (2017) Green Chemistry (accepted)