

Life-Cycle Assessment of Cellulosic Biofuel Production with Ionic Liquid Pretreatment

Binod Neupane, <u>N.V.S.N. Murthy Konda</u>, Seema Singh, Blake A. Simmons, and Corinne D. Scown Joint BioEnergy Institute, US Department of Energy

BioEconomy 2017 Arlington, VA 11-12 July, 2017

- Advanced biofuels research @ JBEI
- Ionic liquid (IL) pretreatment
- IL Process Configurations / Variations
 - Past, Present, and Future
 - Biocompatible ILs, Protic/Neutral ILs
- LCA results
 - Greenhouse gas emissions & Water intensity
- Conclusions

Advanced Biofuels Research @ JBEI

Lignocellulosic Biofuels:

Fuels derived from the solar energy stored in plants/biomass

Efficient, economical and scalable technologies at each stage are necessary
Focus is on drop-in biofuels

Ionic Liquid (IL) Pretreatment

- What are ILs?
 - Essentially, salts in liquid phase at room temperature
- Why ILs?
 - Effective in reducing biomass recalcitrance
 - Facilitates efficient hydrolysis
 - Numerous options (cations / anions) \rightarrow Tunable properties
 - Feedstock agnostic
 - Facilitate operation at milder conditions (low Temp etc.)
 - Lignin valorization possibilities

• @ JBEI

- IL pretreatment technologies are being developed
- With a focus on efficient, economical & scalable technologies

Process configurations (variations)

Integrated processes (novel approach)

Integrated High Gravity Process (iHG-Current)

Energy & Environmental Science 9.3 (2016): 1042-1049.

Protic IL (PIL) process (iHG-Projected)

BioEnergy Institute

F.

Ref: Sun, Jian, et al. "One-pot integrated biofuel production using lowcost biocompatible protic ionic liquids." *Green Chemistry* (2017).

GHG footprint: [Ch][Lys] Production

Joint BioEnergy Institute

ENER

U.S. DEPARTMENT OF

GHG footprint: Biofuel Production

Water intensity: Biofuel Production

BioEnergy Institute

 $\overline{}$

E

U.S. DEPARTMENT OF

Concluding remarks

- Ionic liquid (IL) pretreatment facilitates efficient hydrolysis
- Life-cycle assessment has been performed (for the first-time)
- GHG emissions:
 - Water-wash (traditional) route is water/energy intensive \rightarrow high GHG footprint
 - iHG processes have the potential to reduce GHG footprint significantly
- Water intensity (both consumption & withdrawal) can be comparable to other pretreatment technologies
- Sensitivity analysis highlights the potential impact of key yet uncertain parameters

Thank You!

- Corinne Scown
- Blake Simmons
- Jay Keasling
- Seema Singh
- Binod Neupane
- Jian Sun
- Tanmoy Dutta
- Florent Bouxin
- Anthe George
- Gabriella Papa
- JBEI researchers

<u>MurthyKonda@lbl.gov</u>

ABPDU

Process Demonstration Unit

Advanced Biofuels

The role of biocompatible ILs (BILs)

- Joint BioEnergy Institute
- BILs eliminate the need for water-wash and/or other separation operations prior to hydrolysis/fermentation
 - Reduced water-usage and therefore lower costs (by eliminating or minimizing the need for subsequent IL dehydration)
 - Elimination of glucan/xylan losses in water-washing step
- Possibility to be used in aqueous form (e.g., 10% IL, w/w)
 - Reduced usage of IL
 - Enables higher solids loading
 - No further dilution required prior to hydrolysis and fermentation

Protic ILs (PILs)

- No pH adjustment during hydrolysis/fermentation
 - No mineral acids are used
 - No Need for IL regeneration
 - Improved recovery efficiency and reduced recovery costs

Sun J., Konda N.V.S.N.M. et al., (2017) Green Chemistry (accepted)